News

NGI0 grant for Software Heritage 2020/03/26

Hackers donate 90% of profit to charity 2019/06/13

NGI Zero awarded two EC research and innovation actions 2018/12/01

EC publishes study on Next Generation Internet 2025 2018/10/05

 

Chips4Makers ASICs

[Chips4Makers ASICs]

Current scaling of micro-electronics is focused on improving power, performance and cost per device but with an exponentially increasing start-up cost related to the increased process complexity. For the design of custom chips currently expensive proprietary electronic design automation (EDA) tools need to be used and hefty license fees are due for blocks implementing specific functions like the CPU, USB etc. All this together makes custom chip development only accessible for high-volume production and proprietary designs. In this project a development version of the libre licensed Libre-RISC-V system-on-a-chip will be manufactured in a 0.18um process combined with development on the open source tools and open source chip building blocks to make this possible. Development on the free and open source tools will be focused on making them compatible with the selected process and the building block development will be focused on the so-called standard cell library, the IO library and the SRAM compiler. This project fits in the longer term goal of the Chips4Makers project to make low-volume custom chip production possible using mature process technologies and free and open source tool chains and building blocks. Purpose is to get innovation using custom chips within reach of small start-ups, makers and even hobbyists.

Why does this actually matter to end users?

When you go to a store to buy a laptop or mobile phone, you may see different brands on the outside but choice in terms of what is inside the box (in particular the most expensive component, the processor technology) is pretty much limited to the same core technologies and large vendors that have been in the market for decades. This has a much bigger effect on the users than just the hefty price tag of the hardware, because the technologies at that level impact all other technologies and insecurity at that level break security across the board.

In the field of software, open source has already become the default option in the market for any new setup. In hardware, the situation is different. Users - even very big users such as governments - have very little control over the actual hardware security of the technology they critically depend on every day. Security experts continue to uncover major security issues, and users are rightly concerned about the security of their private data as well as the continuity of their operations. But in a locked-down market there is little anyone can do, because the lack of alternatives. European companies are locked out of the possibility to contribute solutions and start new businesses that can change the status quo.

To break through this standstill, developer communities are working hard to deliver open, trustworthy and accessible alternative computer hardware that anyone can use, study, modify and distribute, just like they can with open source software. This project will deliver such open hardware development tools and bring the production of custom chips for particular computing purposes a lot closer to for example individual designers, start-ups and creatives. Setting free the knowledge to make such chips yourself pushes technological innovation forward, and opens up the computer market from top to bottom for creativity and for new classes of devices we need to power the Next Generation Internet.

Logo NLnet: abstract logo of four people seen from above Logo NGI Zero: letterlogo shaped like a tag

This project was funded through the NGI0 PET Fund, a fund established by NLnet with financial support from the European Commission's Next Generation Internet programme, under the aegis of DG Communications Networks, Content and Technology under grant agreement No 825310. Applications are still open, you can apply today.

Calls

Send in your ideas.
Deadline June 1st, 2020.