NGI Zero awarded two EC research and innovation actions 2018/12/01

EC publishes study on Next Generation Internet 2025 2018/10/05

Bob Goudriaan successor of Marc Gauw 2017/10/12

NLnet Labs' Jaap Akkerhuis inducted in Internet Hall of Fame 2017/09/19

NLnet and Gartner to write vision for EC's Next Generation Internet initiative 2017/04/12

Dutch Ministry of Economic Affairs donates 0.5 million to "Internet Hardening Fund" 2016/12/16


Atom-Based Routing; Related Ideas

7. Related Ideas

For completeness we point to related ideas that we are aware of.

7.1. Geoff Huston's Atoms

Geoff Huston mentions `atoms' as well in HustonAtom. Huston's atoms are somewhat different from the atoms in this proposal. Huston's atoms are allocated to ASes; ours are computed by backbone routers. Either approach has its advantages: allocated atoms are conceptually more easily established (not requiring computation), whereas computed atoms are likely to be more effective, in that they are computed based on the similarity of prefixes as observed by the routers. For instance, computed atoms allow prefixes originated by different ASes to be part of the same atom (such as atom A3 in Figures 2 and 3). In addition, computed atoms allow for greater transparency, since non-backbone routers are not involved in any way (Section 5).

However Huston's definition of atoms provides an interesting alternative that may be of use to us. In particular we can use the techniques in Sections 5.1 and 5.2 and apply them to allocated rather than computed atoms. So it should be possible to use allocated atoms as a `fallback' should it turn out that computed atoms are too expensive or unscalable.

To elaborate a little further on allocated atoms: rather than computing atoms in the backbone of the Internet, ASes throughout the Internet can be allocated atom ids (e.g. by IANA). ASes then announce and withdraw atom ids rather than prefixes in routing update messages. To propagate the mapping between atom ids and prefixes, BGP update messages that include a BGP community attribute RFC1997 can be used. The BGP community attribute contains the atom id, which applies to the prefixes carried by the update message. Such an approach removes the burden of atom computation from backbone routers. On the other hand, it is more drastic in that it requires all ASes in the Internet to cooperate.

7.2. Frank Kastenholz's Aggregates

In Kastenholz Frank Kastenholz introduces a new kind of aggregate. Kastenholz's aggregates are a significantly different concept from atoms. However, Frank Kastenholz is addressing similar issues. Also, like us, Kastenholz separates aggregate ids from aggregate contents, and performs routing computations on aggregate ids instead of prefixes. However, Kastenholz's approach does not remove knowledge of prefixes from any routers. In contrast, we remove prefixes from a subset of routers (the transit routers in Section 5.1), or at least from the forwarding tables (Section 5.2).

We also believe that our approach is somewhat less disruptive than Kastenholz's: we point to ways in which atoms can be applied effectively within the backbone (or part of the backbone) transparently (Sections 5.1 and 5.2).

Next: 8. Planning


Send in your ideas.
Deadline April 1st, 2019.

NLnet projects
Atom-Based Routing
Project plan:
1. Introduction
2. Background
3. Policy Atoms
4. Atom-Based Routing
5. Practical Deployment
6. Answers to Questions
7. Related Ideas
8. Planning
9. Project Members
R. References
Plan as PDF (201kB)
Plan as PostScript.gz (71kB)