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Abstract

A standard model of nonlinear combiner generator for stream cipher system com-
bines the outputs of several independent Linear Feedback Shift Register (LFSR) se-
quences using a nonlinear Boolean function to produce the key stream. Given such a
model, cryptanalytic attacks have been proposed by finding out the sparse multiples of
the connection polynomials corresponding to the LFSRs. In this direction recently a
few works are published on t-nomial multiples of primitive polynomials. We here pro-
vide further results on degree distribution of the t-nomial multiples. However, finding
out the sparse multiples of just a single primitive polynomial does not suffice. The exact
cryptanalysis of the nonlinear combiner model depends on finding out sparse multiples
of the products of primitive polynomials. We here make a detailed analysis on t-nomial
multiples of products of primitive polynomials. We present new enumeration results
for these multiples and provide some estimation on their degree distribution.

Keywords : Primitive Polynomials, Galois Field, Polynomial Multiples, Cryptanalysis,
Stream Cipher.

1 Introduction

Linear Feedback Shift Register (LFSR) is used extensively as pseudorandom bit generator
in different cryptographic schemes and the connection polynomials of the LFSRs are the
polynomials over GF(2) (see [3, 12, 2] for more details). To get the maximum cycle length
these connection polynomials need to be primitive [9]. To resist cryptanalytic attacks, it is
important that these primitive polynomials should be of high weight and also they should not
have sparse multiples [11, 1] (see also [8] and the references in this paper for current research
on cryptanalysis in this direction). With this motivation, finding out sparse multiples of
primitive polynomials has received a lot of attention recently, as evident from [6, 4, 5].
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It has been reported [5] that given any primitive polynomial of degree d, it has exactly

Nd,t =

(
2d−2
t−2

)
−Nd,t−1− t−1

t−2
(2d−t+1)Nd,t−2

t−1
many t-nomial multiples (having constant term 1) with

initial conditions Nd,2 = Nd,1 = 0. In [5], it has been identified that the distribution of the
degrees of t-nomial multiples (having constant term 1) of a degree d primitive polynomial
f(x) is very close with the distribution of maximum of the tuples having size (t− 1) in the
range 1 to 2d − 2. We here provide further experiments to substantiate this claim. In fact
we find that the square of the degrees of t-nomial multiples and the square of the maximum
of the tuples having size (t − 1) presents almost similar kind of statistical behaviour. This
we discuss in Section 3.

However, in terms of the practical nonlinear combiner model [12, 13], it is important
to discuss about the sparse multiples of products of primitive polynomials instead of just a
single primitive polynomial. In the nonlinear combiner model outputs of several LFSRs are
combined using a nonlinear Boolean function. To make such a system safe, it is important
to use correlation immune Boolean functions with some important cryptographic properties
(see [1] and references in this paper for more details). Even if the combining Boolean function
satisfies good cryptographic properties and possesses correlation immunity of order m, it is
possible to consider product of (m + 1) primitive polynomials for cryptanalysis. Generally
the degree of the primitive polynomials are taken to be coprime for generation of key stream
having better cryptographic properties [9, Page 224]. Hence, if one can find sparse multiples
of the product of primitive polynomials, then it is possible to launch cryptanalytic attacks
on the nonlinear combiner model of the stream cipher (see [1] for a concrete description of
such an attack).

In this direction we concentrate on t-nomial multiples of products of primitive poly-
nomials. Consider k different primitive polynomials f1(x), f2(x), . . . , fk(x) having degree
d1, d2, . . . , dk respectively, where d1, d2, . . . , dk are pairwise coprime. Then the number of
t-nomial multiples with degree < (2d1 − 1)(2d2 − 1) . . . (2dk − 1) of f1(x)f2(x) . . . fk(x) is at
least ((t−1)!)k−1∏k

r=1 Ndr,t, where Ndr,t is as defined above (see also [5]). In fact, we present
a more general result, which works for product of polynomials (may not be primitive) and
then as a special case, we deduce the result for products of primitive polynomials. We discuss
these issues in Section 4.

In Section 5, we discuss about the degree distribution for t-nomial multiples of product of
primitive polynomials having degree pairwise coprime. We try to estimate this distribution
and support our claim with experimental results. It is observed that the distribution of the
degrees of t-nomial multiples (having constant term 1) of product of primitive polynomials
is very close with the distribution of maximum of the tuples having size (t− 1). Thus, it is
similar to the degree distribution of t-nomial multiples (having constant term 1) of primitive
polynomials.

Let us now discuss a few basic concepts in this direction.

2 Preliminaries

The field of 2 elements is denoted by GF (2). GF (2d) denotes the extension field of dimen-
sion d over GF (2). A polynomial is irreducible over a field if it is not the product of two
polynomials of lower degree in the field. A primitive polynomial of degree d is an irreducible
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polynomial if its roots are the generators of the field GF (2d). The exponent of the polyno-
mial f(x) (having degree d ≥ 1, with f(0) = 1) is e ≤ 2d − 1, which is the least positive
integer such that f(x) divides xe − 1. For primitive polynomials e = 2d − 1. By a t-nomial
we refer to a polynomial with t distinct non zero terms. For more details on finite fields, the
reader is referred to [10, 9].

First we revisit some results presented in [5] and show how finding out t-nomial multiples
is related to weight enumerator of Hamming codes. This relationship has also been used
in [1, Page 580] to estimate the number of parity check equations, but explicit relationship
was not investigated.

2.1 Weight enumerator of Hamming code and t-nomial multiples
of a primitive polynomial

Consider a primitive polynomial f(x) of degree d and its multiples upto degree 2d− 2. This
constructs a [2d − 1, 2d −m− 1, 3] linear code, which is the well known Hamming code [10].
By N∗d,t we denote the number of codewords of weight (number of 1’s in the codeword) t
in the Hamming code [2d − 1, 2d −m− 1, 3]. Now we present the following technical result
which connects Nd,t and N∗d,t.

Theorem 2.1 N∗d,t = 2d−1
t
Nd,t.

Proof : Consider a primitive polynomial f(x) of degree d over GF (2). Now, N∗d,t is the
number of t-nomial multiples with degree ≤ 2d − 2 of f(x). Note that, for each of these
multiples, the constant term can be either 0 or 1. On the other hand, Nd,t is the number of
t-nomial multiples having constant term 1 with degree ≤ 2d − 2 of f(x).

Let α be a root of f(x). Consider f(x) divides 1 + xi1 + xi2 + . . . + xit−2 + xit−1 for
1 ≤ i1 < i2 < . . . < it−2 < it−1 ≤ 2d − 2. Hence, 1 + αi1 + αi2 + . . . + αit−1 = 0. This
immediately gives, αi(1 + αi1 + αi2 + . . . + αit−1) = 0 for 0 ≤ i ≤ 2d − 2. Thus, there
are (2d − 1) number of distinct t-nomial multiples (having constant term either 0 or 1),
corresponding to 1 + xi1 + xi2 + . . .+ xit−2 + xit−1 . Out of these (2d− 1) multiples, there are
exactly t many multiples having constant term 1. This happens with the original t-nomial
and when i+ ir = 2d−1, for r = 1, . . . , t−1. Thus, corresponding to each of the Nd,t number

of multiples having constant term 1, we get 2d−1
t

number of distinct t-nomial multiples having
constant term either 0 or 1. Hence the result.

Some results presented in [5, Section 2] can be achieved using the above theorem.

1. We have N∗d,t =

(
2d−1
t−1

)
−N∗d,t−1−(2d−t+1)N∗d,t−2

t−1
, from weight enumerator of Hamming

code [10, Page 129]. Thus we get Nd,t =

(
2d−2
t−2

)
−Nd,t−1− t−1

t−2
(2d−t+1)Nd,t−2

t−1
using Theo-

rem 2.1.

2. It is easy to see that N∗d,t = N∗d,2d−1−t. This, using Theorem 2.1 gives,
Nd,t
t

=
N
d,2d−1−t
2d−1−t .

3. Consider a t-nomial multiple 1+xi1+xi2+. . .+xit−2+xit−1 of a primitive polynomial f(x)
having degree d. Now, it is clear that xi(1+xi1 +xi2 +. . .+xit−2 +xit−1) gives 2d−2−it−1

many t-nomial multiples of f(x) with constant term 0 for 1 ≤ i ≤ 2d − 2− it−1. Thus,
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each t-nomial multiple, of the form 1 + xi1 + xi2 + . . . + xit−2 + xit−1 counted in Nd,t

produces one t-nomial multiple (itself) with constant term 1 and 2d − 2 − it−1 many

t-nomial multiples with constant term 0. So,
∑Nd,t
r=1 (2d − 1 − dr) = N∗d,t, where dr is

the degree of t-nomial multiples with constant term 1. This, using Theorem 2.1 gives,∑Nd,t
r=1 dr = t−1

t
(2d − 1)Nd,t.

3 Degree distribution of multiples of primitive polyno-

mials

In [5], the distribution of the degrees for the t-nomial multiples of primitive polynomials has
been discussed. We consider the multiples with constant term 1. The importance of the
constant term being 1 is as follows. We know from [11] that if the connection polynomial (a
primitive one) is of low weight, then it is possible to exploit cryptanalytic attacks. In the
same direction, it is also clear that if there is a primitive polynomial f(x) of degree d with high
weight which has a t-nomial (t small) multiple ft(x), then the recurrence relation satisfied
by f(x) will also be satisfied by ft(x). It is then important to find out t-nomial multiples of
low degree for fast cryptanalytic attacks. Note that the recurrence relation induced by the
t-nomial 1 +xi1 +xi2 + . . .+xit−2 +xit−1 (constant term 1) is same as the recurrence relation
induced by any of the t-nomials xi(1 + xi1 + xi2 + . . . + xit−2 + xit−1) (constant term may
be zero). Thus, it is important to find out distinct t-nomials with constant term 1. This
consideration has also been followed in [5].

Given any primitive polynomial f(x) of degree d, it is clear that f(x) has Nd,t number
of t-nomial multiples having degree ≤ 2d − 2. Now it is an important question that how
many t-nomial multiples are there having degree less than or equal to some c. Since, this
result is not settled, in [5], an estimation has been used. In [5], any t-nomial multiple
1+xi1 +xi2 +. . .+xit−2 +xit−1 has been interpreted as the (t−1)-tuple < i1, i2, . . . , it−2, it−1 >.
It was also empirically justified using experimental result (considering primitive polynomials
of degree 8, 9 and 10, Tables 1, 2, 3 in [5]) that by fixing f(x), if one enumerates all the
Nd,t different (t−1) tuples, then the distribution of the tuples seems random. Moreover, the
distribution of the degrees of the t-nomial multiples seems very close with the distribution
of maximum value of each of the ordered tuples < i1, i2, . . . , it−2, it−1 > with 1 ≤ i1 < i2 <
. . . < it−2 < it−1 ≤ 2d − 2.

To analyse the degree distribution of these t-nomial multiples, the random variate X is
considered in [5], which is max(i1, i2, . . . , it−2, it−1), where 1+xi1 +xi2 + . . .+xit−2 +xit−1 is a
t-nomial multiple of f(x). There are Nd,t such multiples. The mean value of the distribution
of X is t−1

t
(2d − 1)Nd,t divided by Nd,t, i.e., X = t−1

t
(2d − 1) (see [5] and Section 2 of

this paper). On the other hand, consider all the (t − 1)-tuples < i1, i2, . . . , it−2, it−1 > in

the range 1 to 2d − 2. There are
(

2d−2
t−1

)
such tuples. Each tuple is in ordered form such

that 1 ≤ i1 < i2 < . . . < it−2 < it−1 ≤ 2d − 2. Consider the random variate Y which
is max(i1, i2, . . . , it−2, it−1). It has been shown in [5] that the mean of this distribution is
Y = t−1

t
(2d − 1).

Thus, given any primitive polynomial f(x) of degree d, the average degree of its t-nomial
multiples with degree ≤ 2d− 2 is equal to the average of maximum of all the distinct (t− 1)
tuples form 1 to 2d − 2. With this result and experimental observations, the work of [5]
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assumes that the distributions X, Y are very close.

3.1 Sum of Squares

We here provide further experimental results in this direction and strengthen the claim of [5]
that the distributions X, Y are very close. For this we first find out the sum of squares of
max(i1, i2, . . . , it−2, it−1) for the distribution Y .

Lemma 3.1 The average of squares of the values in Y is t−1
t

(2d − 1)( t2
d

t+1
− 1). Moreover,

standard deviation of Y is 1
t

√
t−1
t+1

(2d − 1)(2d − t− 1).

Proof : Consider the random variate Y which is max(i1, i2, . . . , it−2, it−1). We know that
< i1, i2, . . . , it−2, it−1 > is any ordered (t − 1)-tuple from the values 1 to 2d − 2. Note that

there is only 1 tuple with maximum value (t − 1). There are
(
t−1
t−2

)
tuples with maximum

value t,
(

t
t−2

)
tuples with maximum value t+ 1 and so on. Thus, the average of the squares

of the values in the distribution Y =
∑2d−2
i=t−1 i

2
(
i−1
t−2

)
/
(

2d−2
t−1

)
. Now,

∑2d−2
i=t−1 i

2
(
i−1
t−2

)
= (t −

1)t
∑2d−2
i=t−1

(
i+1
t

)
− (t− 1)

∑2d−2
i=t−1

(
i
t−1

)
= (t− 1)t

(
2d

t+1

)
− (t− 1)

(
2d−1
t

)
. Simplifying we get,∑2d−2

i=t−1 i
2
(
i−1
t−2

)
/
(

2d−2
t−1

)
= t−1

t
(2d − 1)( t2

d

t+1
− 1). Now standard deviation of Y

=
√

t−1
t

(2d − 1)( t2
d

t+1
− 1)− ( t−1

t
(2d − 1))2 = 1

t

√
t−1
t+1

(2d − 1)(2d − t− 1).

Primitive polynomial t = 3 t = 4 t = 5 t = 6 t = 7

x4 + x + 1 110 132.61 148.04 158.96 167.13

x4 + x3 + 1 110 132.61 148.04 158.96 167.13
Estimated 110 132.75 148 158.92 167.14

x5 + x2 + 1 475.33 571.48 636.67 682.78 717.40

x5 + x3 + 1 475.33 571.48 636.67 682.78 717.40

x5 + x3 + x2 + x + 1 475.33 571.48 636.43 682.81 717.44

x5 + x4 + x2 + x + 1 475.33 571.55 636.41 682.80 717.45

x5 + x4 + x3 + x + 1 475.33 571.55 636.41 682.80 717.45

x5 + x4 + x3 + x2 + 1 475.33 571.48 636.43 682.81 717.44
Estimated 475.33 571.95 636.53 682.73 717.42

x6 + x + 1 1974 2371.63 2636.76 2827.51 2969.98

x6 + x4 + x3 + x + 1 1974 2371.09 2636.71 2827.54 2969.99

x6 + x5 + 1 1974 2371.63 2636.76 2827.51 2969.98

x6 + x5 + x2 + x + 1 1974 2371.27 2636.46 2827.54 2970.01

x6 + x5 + x3 + x2 + 1 1974 2371.09 2636.71 2827.54 2969.99

x6 + x5 + x4 + x + 1 1974 2371.27 2636.46 2827.54 2970.01
Estimated 1974 2371.95 2637.60 2827.50 2970

x7 + x + 1 8043.33 9657.33 10736.02 11505.61 12083.13

x7 + x3 + 1 8043.33 9656.92 10736.05 11505.62 12083.13

x7 + x3 + x2 + x + 1 8043.33 9656.37 10735.46 11505.65 12083.16

x7 + x4 + 1 8043.33 9656.92 10736.05 11505.62 12083.13

x7 + x4 + x3 + x2 + 1 8043.33 9656.65 10735.77 11505.64 12083.14

x7 + x5 + x2 + x + 1 8043.33 9656.66 10735.87 11505.64 12083.14

x7 + x5 + x3 + x + 1 8043.33 9657.48 10735.60 11505.61 12083.15

x7 + x5 + x4 + x3 + 1 8043.33 9656.65 10735.77 11505.64 12083.14

x7 + x5 + x4 + x3 + x2 + x + 1 8043.33 9657.82 10735.71 11505.60 12083.14

x7 + x6 + 1 8043.33 9657.33 10736.02 11505.61 12083.13

x7 + x6 + x3 + x + 1 8043.33 9656.59 10735.42 11505.65 12083.16

x7 + x6 + x4 + x + 1 8043.33 9656.59 10735.42 11505.65 12083.16

x7 + x6 + x4 + x2 + 1 8043.33 9657.48 10735.60 11505.61 12083.15

x7 + x6 + x5 + x2 + 1 8043.33 9656.66 10735.87 11505.64 12083.14

x7 + x6 + x5 + x3 + x2 + x + 1 8043.33 9656.38 10735.47 11505.65 12083.16

x7 + x6 + x5 + x4 + 1 8043.33 9656.37 10735.46 11505.65 12083.16

x7 + x6 + x5 + x4 + x2 + x + 1 8043.33 9656.38 10735.47 11505.65 12083.16

x7 + x6 + x5 + x4 + x3 + x2 + 1 8043.33 9657.82 10735.71 11505.60 12083.14
Estimated 8043.33 9658.35 10735.73 11505.60 12083.14

Table 1. Average of sum of squares for the degrees of t-nomial multiples. Primitive
polynomials with degree 4, 5, 6, 7 are considered.
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Here we provide the Table 1 for multiples of primitive polynomials having degree d =
4, 5, 6, 7. We take each of the primitive polynomials and then find out the average of the
square of degrees of t-nomial multiples for t = 3, 4, 5, 6, 7. In the last row we present the
estimated value t−1

t
(2d − 1)( t2

d

t+1
− 1).

From the above table it is clear that in terms of average of squares, the distributions X, Y
are very close. The most interesting observation in this direction is the sum of square of the
degree of the trinomial multiples. Note that the average of the squares of the elements of
distribution Y (considering t = 3) and the average of the squares of the degrees of trinomial
multiples are same for all the experiments, which is 2

3
(2d−1)(3.2d−2−1). Thus we conjecture

the following result.

Conjecture 3.1 Consider any primitive polynomial f(x) of degree d. Consider that the
degree of the trinomial multiples (having degree ≤ 2d− 2) of f(x) are d1, d2, . . . , dNd,3. Then∑Nd,3
i=1 d

2
i = 2

3
(2d − 1)(3.2d−2 − 1)Nd,3.

3.2 Reciprocal Polynomials

Consider two primitive polynomials f(x) and g(x) of degree d, such that they are reciprocal
to each other. That is, if α is a root of f(x), then α−1 = α2d−2 is the root of g(x). Consider
the multiset W (f(x), d, t), which contains the degree of all the t-nomial multiples (having
degree < 2d − 1) of a degree d polynomial f(x). Now we have the following result.

Lemma 3.2 Let f(x) and g(x) be two reciprocal primitive polynomials of degree d. Then
W (f(x), d, t) = W (g(x), d, t).

Proof : Note that f(x) divides a t-nomial xi1 + xi2 + . . .+ xit−2 + xit−1 + 1 iff g(x) divides
a t-nomial xi1 + xi1−i2 + . . .+ xi1−it−2 + xi1−it−1 + 1. Without loss of generality, we consider
that i1 > i2 > . . . > it−2 > it−1. This gives the proof.

From Lemma 3.2 we get that, since W (f(x), d, t) = W (g(x), d, t), the statistical param-
eters based on W (f(x), d, t) or W (g(x), d, t) are also same. In Table 1, it is clear that the
entries corresponding to any primitive polynomial and its reciprocal are same.

4 t-nomial multiples of products of primitive polyno-

mials

We have already mentioned in the introduction that it is important to find out t-nomial
multiples of product of primitive polynomials instead of t-nomial multiples of just a single
primitive polynomial. Let us now briefly describe how the exact cryptanalysis works. For
more details about the cryptographic properties of the Boolean functions mentioned below,
see [1]. Consider F (X1, . . . , Xn) is an n-variable, m-resilient Boolean function used in com-
bining the output sequences of n LFSRs Si having feedback polynomials ci(x). The Walsh
transform of the Boolean function F gives, WF (ω) 6= 0 for some ω with wt(ω) = m + 1.
This means that the Boolean function F and the linear function

⊕n
i=1 ωiXi are correlated.

Let ωi1 = . . . = ωim+1 = 1. Now consider the composite LFSR S which produces the same
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sequence as the XOR of the sequences of the LFSRs Si1 , . . . , Sim+1 . The connection poly-
nomial of the composite LFSR will be

∏m+1
j=1 cij(x). Since F and

⊕n
i=1 ωiXi are correlated,

the attacks target to estimate the stream generated from the composite LFSR S having the
connection polynomial ψ(x) =

∏m+1
j=1 cij(x).

The attack heavily depends on sparse multiples of ψ(x). One such attack, presented
in [1], uses t-nomial multiples t = 3, 4, 5. In design of this model of stream cipher, generally
the degree of the primitive polynomials are taken to be coprime to each other [9, Page 224]
to achieve better cryptographic properties. We here take care of that restriction also.

Note that in [1, Page 581], it has been assumed that the approximate count of multiples of
primitive polynomials and multiples of products of primitive polynomials are close. However,
this is not always true. In fact, it is possible to find out products of primitive polynomials
having same degree which do not have any t-nomial multiple for some t. The construction of
BCH code [10] uses this idea. On the other hand, if the degree of the primitive polynomials
are pairwise coprime, then we show that it is always guaranteed to get t-nomial multiples of
their product provided each primitive polynomial has t-nomial multiples. Moreover, in the
next section we will show that the approximate count of multiples of primitive polynomials
and multiples of products of primitive polynomials are close when the degree of the primitive
polynomials are mutually coprime (see Remark 5.1). So for this case the assumption of [1,
Page 581] is a good approximation. Let us now present the main theorem.

Theorem 4.1 Consider k many polynomials f1(x), f2(x), . . . , fk(x) over GF(2) having de-
grees d1, d2, . . . , dk and exponents e1, e2, . . . , ek respectively, with the following conditions :

1. e1 6= e2 6= . . . 6= ek are pairwise coprime,

2. f1(0) = f2(0) = . . . = fk(0) = 1,

3. gcd(fr(x), fs(x)) = 1 for 1 ≤ r 6= s ≤ k,

4. number of t-nomial multiples (with degree < er) of fr(x) is nr.

Then the number of t-nomial multiples with degree < e1e2 . . . ek of f1(x)f2(x) . . . fk(x) is at
least ((t− 1)!)k−1n1n2 . . . nk.

Proof : Consider that any polynomial fr(x) has a t-nomial multiple xi1,r+xi2,r+. . .+xit−1,r+1
of degree < er. Now we try to find out a t-nomial multiple of f1(x)f2(x) . . . fk(x) having
degree < e1e2 . . . ek.

Consider the set of equations I1 = i1,r mod er for r = 1, . . . , k. Since e1, . . . , ek are
pairwise coprime, we will have a unique solution of I1 mod e1e2 . . . ek by Chinese remainder
theorem [7, Page 53]. Similarly, consider Ij = ij,r mod er for r = 1, . . . , k and j = 1, . . . , t−1.
By Chinese remainder theorem, we get a unique solution of Ij mod e1e2 . . . ek.

First we like to show that fr(x) (for r = 1, . . . , k) divides xI1 + xI2 + . . . + xIt−1 + 1.
The exponent of fr(x) is er. So we need to show that fr(x) divides xI1 mod er + xI2 mod er +
. . . + xIt−1 mod er + 1. We have ij,r = Ij mod er for r = 1, . . . , k, j = 1, . . . , t − 1. Thus,
xI1 mod er +xI2 mod er + . . .+xIt−1 mod er + 1 is nothing but xi1,r +xi2,r + . . .+xit−1,r + 1. Hence
fr(x) (for r = 1, . . . , k) divides xI1 + xI2 + . . .+ xIt−1 + 1.

Here we need to show that xI1 + xI2 + . . . + xIt−1 + 1 is indeed a t-nomial, i.e., Ij 6=
Il mod e1 . . . ek for j 6= l. If Ij = Il, then it is easy to see that ij,r = il,r mod er and hence,
xi1,r + xi2,r + . . .+ xit−1,r + 1 itself is not a t-nomial for any r, which is a contradiction.
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Moreover, we have gcd(fr(x), fs(x)) = 1 for r 6= s. Thus, f1(x)f2(x) . . . fk(x) divides
xI1 +xI2 + . . .+xIt−1 + 1. Also it is clear that degree of xI1 +xI2 + . . .+xIt−1 + 1 is less than
e1e2 . . . ek.

Corresponding to the t-nomial multiple of f1(x), i.e., xi1,1 + xi2,1 + . . .+ xit−1,1 + 1, we fix
the elements in the order i1,1, i2,1, . . . , it−1,1. Let us name them p1,1, p2,1, . . . , pt−1,1.

For r = 2, . . . k, the case is as follows. Corresponding to the t-nomial multiple xi1,r+xi2,r+
. . . + xit−1,r + 1 of fr(x), we use any possible permutation of the elements i1,r, i2,r, . . . , it−1,r

as p1,r, p2,r, . . . , pt−1,r. Thus we will use any of the (t − 1)! permutations for each t-nomial
multiple of fr(x) for r = 2, . . . , k.

Now we use Chinese remainder theorem to get Ij having value < e1e2 . . . ek from pj,r’s for
r = 1, . . . , k. Each pj,r is less than er. Note that, p1,r, p2,r, . . . , pt−1,r (related to fr(x)) can
be permuted in (t − 1)! ways and we consider the permutation related to all the t-nomials
except the first one.

Thus, corresponding to k many t-nomial multiples (one each for f1(x), . . . , fk(x)), we get
((t−1)!)k−1 many t-nomial multiples (degree < e1e2 . . . ek) of the product f1(x)f2(x) . . . fk(x).
Using Chinese remainder theorem, it is routine to check that all these ((t− 1)!)k−1 multiples
are distinct.

Since, each fr(x) has nr distinct t-nomial multiples of degree < er, the total number
of t-nomial multiples of the product f1(x)f2(x) . . . fk(x) having degree < e1e2 . . . ek is ((t −
1)!)k−1n1n2 . . . nk.

To accept the above count is a lower bound, one needs to show that the t-nomials
generated by this method are all distinct. Consider two collections of t-nomial multiples
xa1,r + xa2,r + . . . + xat−1,r + 1 and xb1,r + xb2,r + . . . + xbt−1,r + 1 of fr(x) for r = 1, . . . , k.
There exists at least one s in the range 1, . . . , k such that xa1,s + xa2,s + . . . + xat−1,s + 1
and xb1,s + xb2,s + . . . + xbt−1,s + 1 are distinct. Let us consider that one of the common
multiples form these two sets of t-nomials are same, say xA1,v +xA2,v + . . .+xAt−1,v + 1 (from
the set xa1,r + xa2,r + . . . + xat−1,r + 1) and xB1,v + xB2,v + . . . + xBt−1,v + 1 (from the set
xb1,r + xb2,r + . . .+ xbt−1,r + 1).

Without loss of generality we consider A1,v > A2,v > . . . > At−1,v and B1,v > B2,v >
. . . > Bt−1,v. Since these two t-nomials are same, we have Aj,v = Bj,v mod e1e2 . . . ek. This
immediately says that Aj,v = Bj,v mod er, which implies aj,r = bj,r mod er for each j in
1, . . . , t− 1 and each r in 1, . . . , k. This contradicts to the statement that xa1,s +xa2,s + . . .+
xat−1,s + 1 and xb1,s + xb2,s + . . .+ xbt−1,s + 1 are distinct.

From the above point it is clear that the number of t-nomial multiples with degree
< e1e2 . . . ek of f1(x)f2(x) . . . fk(x) is at least ((t− 1)!)k−1n1n2 . . . nk.

Corollary 4.1 Consider k many primitive polynomials f1(x), f2(x), . . . , fk(x) having degree
d1, d2, . . . , dk respectively, where d1, d2, . . . , dk are pairwise coprime. Then the number of t-
nomial multiples with degree < (2d1−1)(2d2−1) . . . (2dk−1) of f1(x)f2(x) . . . fk(x) is at least
((t− 1)!)k−1∏k

r=1 Ndr,t, where Ndr,t is as defined in Theorem 2.1.

Proof : Since we are considering the primitive polynomials, the exponent er = 2dr − 1.
Also, given d1, d2, . . . , dk are mutually coprime, it is clear that e1, e2, . . . , ek are also mutually
coprime. Moreover, There is no common divisor of any two primitive polynomials. The proof
then follows from Theorem 4.1 putting nr = Ndr,t.
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Corollary 4.2 In Theorem 4.1, for t = 3, the number of trinomial multiples with degree
< e1e2 . . . ek of f1(x)f2(x) . . . fk(x) is exactly equal to 2k−1n1n2 . . . nk.

Proof : Consider a trinomial multiple xI1 +xI2 +1 having degree < e1e2 . . . ek of the product
f1(x)f2(x) . . . fk(x). Since, the product f1(x)f2(x) . . . fk(x) divides xI1 + xI2 + 1, it is clear
that fr(x) divides xI1 + xI2 + 1. Hence, fr(x) divides xI1 mod er + xI2 mod er + 1 having degree
< er. Now take, i1,r = I1 mod er and i2,r = I2 mod er, for r = 1, . . . , k. It is clear that
I1 6= I2 mod er (i.e., i1,r 6= i2,r), otherwise fr(x) divides 1, which is not possible.

Also note that either i1,r or i2,r can not be zero, otherwise fr(x) divides either xi2,r or
xi1,r , which is not possible. Thus, fr(x) divides xi1,r + xi2,r + 1. Then using the construction
method in the proof of Theorem 4.1, one can get back xI1 + xI2 + 1 as the multiple of
f1(x)f2(x) . . . fk(x) which is already considered in the count 2k−1n1n2 . . . nk as described in
the proof of Theorem 4.1. Hence this count is exact.

Corollary 4.3 Consider k many primitive polynomials f1(x), f2(x), . . . , fk(x) having degree
d1, d2, . . . , dk respectively, where d1, d2, . . . , dk are pairwise coprime. Then the number of
trinomial multiples with degree < (2d1 − 1)(2d2 − 1) . . . (2dk − 1) of f1(x)f2(x) . . . fk(x) is
exactly equal to 2k−1∏k

r=1 Ndr,3, where Ndr,3 is as defined in Theorem 2.1.

Proof : The proof follows from Corollary 4.1 and Corollary 4.2.
In Corollary 4.2 we proved that the number of trinomial multiples of f1(x)f2(x) . . . fk(x)

is exactly 2k−1n1n2 . . . nk. However, it is important to mention that for t ≥ 4, ((t −
1)!)k−1n1n2 . . . nk is indeed a lower bound and not an exact count. The reason is as fol-
lows.

Consider fr(x) has a multiple xa1,r + xa2,r + . . .+ xat−1,r + 1. Note that for t ≥ 5, we get
(t − 2)-nomial multiples of fr(x) having degree < er. Consider the (t − 2)-nomial multiple
as xa1,r + xa2,r + . . . + xat−3,r + 1. Now, from the (t − 2)-nomial multiple we construct a
multiple xa1,r +xa2,r + . . .+xat−1,r + 1, where, at−2,r = at−1,r = w, where, w < er. Then if we
apply Chinese remainder theorem as in Theorem 4.1, that will very well produce a t-nomial
multiple of f1(x)f2(x) . . . fk(x) which is not counted in Theorem 4.1. Thus the count is not
exact and only a lower bound. For the case of t = 4, we can consider the multiples of the
form xir + xir + 1 + 1 of fr(x). These type of multiples of fr(x)’s will contribute additional
multiples of the product f1(x)f2(x) . . . fk(x) which are not counted in Theorem 4.1.

Corollary 4.4 In Theorem 4.1, for t ≥ 4, the number of t-nomial multiples with degree
< e1e2 . . . ek of f1(x)f2(x) . . . fk(x) is strictly greater than ((t− 1)!)k−1n1n2 . . . nk.

Let us consider the product of two primitive polynomials of degree 3, 4, degree 3, 5 and
degree 4, 5 separately. Table 2 compares the lower bound given in Theorem 4.1 and the
exact count by running computer program. Note that it is clear that for t = 3, the count
is exact as mentioned in Corollary 4.3. On the other hand, for t ≥ 4, the count is a lower
bound (strictly greater than the exact count) as mentioned in Corollary 4.4. In Table 2, for
a few cases the lower bound is zero, since N3,5 = N3,6 = 0.

t 3 4 5 6 7
Lower bound 42 672 0 0 146160
Exact count 42 1460 35945 717556 11853632

Product of degree 3, 4

t 3 4 5
Lower bound 90 3360 0
Exact count 90 6564 344625

t 3 4 5
Lower bound 210 23520 1128960
Exact count 210 32508 3723685

Product of degree 3, 5 Product of degree 4, 5

Table 2. Count for t-nomial multiples of product of primitive polynomials.
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We already know that the lower bound result presented in Corollary 4.1 is invariant on
the choice of the primitive polynomials. We observe that this is also true for the exact count
found by computer search. As example, if one chooses any primitive polynomial of degree
3 and any one of degree 4, the exact count does not depend on the choice of the primitive
polynomials.

Thus we make the following experimental observation. Consider k many primitive poly-
nomials f1(x), f2(x), . . . , fk(x) having degree d1, d2, . . . , dk respectively, where d1, d2, . . . , dk
are pairwise coprime. Then the exact number of t-nomial multiples with degree < (2d1 −
1)(2d2 − 1) . . . (2dk − 1) of f1(x)f2(x) . . . fk(x) is same irrespective of the choice of primitive
polynomial fr(x) of degree dr.

4.1 Exact count vs Lower bound

Note that the values in the Table 2 shows that there are big differences between the exact
count and the lower bound. Note that the lower bound in some cases is zero, since N3,5 =
N3,6 = 0. We will now clarify these issues.

Let us first present the following result.

Proposition 4.1 Consider two primitive polynomials f1(x), f2(x) of degree d1, d2 (mutually
coprime) and exponent e1, e2 respectively. Then the exact number of 4-nomial multiples of
f1(x)f2(x) is 6Nd1,4Nd2,4 + (e1 − 1)(e2 − 1) + (3(e1 − 1) + 1)Nd2,4 + (3(e2 − 1) + 1)Nd1,4.

Proof : The term 6Nd1,4Nd2,4 follows from Theorem 4.1.
Consider xi + xk1e1 + xk2e2 + 1, where i < e1e2, i mod e1 6= 0, i mod e2 6= 0, and i =

k2e2 mod e1 = k1e1 mod e2, k1 < e2, k2 < e1. Thus it is clear that for a fixed i, we will get
unique k1, k2. Now there are (e1e2− 1)− (e1− 1)− (e2− 1) = (e1− 1)(e2− 1) possible values
of i. Note that in each of the cases, xi + xk1e1 + xk2e2 + 1 is divisible by f1(x)f2(x). So this
will add to the count.

Fix a multiple xi+xj+xl+1 of f2(x) where i, j, l are unequal and degree of xi+xj+xl+1
is less than e2. Now consider a multiple xa+xa+x0 +1 of f1(x). As a varies from 1 to e1−1,
for each a, we will get three different multiples of f1(x)f2(x) by using Chinese remainder
theorem. The reason is as follows. Fix the elements a, a, 0 in order. Now i, j, k can be placed
in 3!

2!
= 3 ways to get distinct cases. Varying a from 1 to e1 − 1, we get 3(e1 − 1) multiples.

Moreover, if a = 0, then also xa+xa+x0 +1 and xi+xj+xl+1 will provide only one multiple
of f1(x)f2(x). Thus, considering each multiple of f2(x) we get 3(e1−1) + 1 multiples. Hence
the total contribution is (3(e1 − 1) + 1)Nd2,4.

Similarly fixing a multiple xi + xj + xl + 1 of f1(x) and xa + xa + x0 + 1 of f2(x) we get
the count (3(e2 − 1) + 1)Nd1,4.

It is a routine but tedious exercise to see that all these 4-nomial multiples of f1(x)f2(x)
are distinct and there is no other 4-nomial multiples having degree < e1e2.

Note that using this formula of Proposition 4.1, we get the exact counts for 4-nomial
multiples as presented in Table 2. However, extending the exact formula of 4-nomial multiples
of product of two primitive polynomials seems extremely tedious. On the other hand, an
important question is do we at all need the exact count for cryptographic purposes? We
answer this as follows.

Consider that f1(x)f2(x) . . . fk(x) is itself a τ -nomial with constant term 1. From crypt-
analytic point of view, it is interesting to find out t-nomial multiples of f1(x)f2(x) . . . fk(x)
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only when t < τ (in practical cases, t << τ). Now we like to present an interesting experi-
mental observation.

Conjecture 4.1 Let xI1 +xI2 + . . .+xIt−1 + 1 be the least degree t-nomial multiple (4 ≤ t <
τ) of f1(x)f2(x) . . . fk(x) which itself is a τ -nomial. Each polynomial fr(x) is a primitive
polynomial of degree dr (degrees are pairwise coprime) and exponent er = 2dr − 1. Moreover,
Ndr,t > 0. Then Iv 6= Iw mod er for any 1 ≤ v 6= w ≤ t− 1 and for any r = 1, . . . , k. That
is, the least degree t-nomial multiple of f1(x)f2(x) . . . fk(x) is the one which is generated as
described in Theorem 4.1.

As example, consider (x3+x+1)(x4+x+1) = x7+x5+x3+x2+1 which is itself a 5-nomial.
Now the least degree 4-nomial multiple of x7 + x5 + x3 + x2 + 1, as generated in the proof of
Theorem 4.1, is x9 +x4 +x3 + 1. Note that x9 mod 7 +x4 mod 7 +x3 mod 7 + 1 = x2 +x4 +x3 + 1
and x9 mod 15 + x4 mod 15 + x3 mod 15 + 1 = x9 + x4 + x3 + 1. Thus the multiple x9 + x4 + x3 + 1
is generated as in Theorem 4.1. On the other hand, the least degree 4-nomial multiple of
x7 + x5 + x3 + x2 + 1 is x16 + x14 + x9 + 1, which is not counted in the proof of Theorem 4.1.
In this case, x16 mod 7 + x14 mod 7 + x9 mod 7 + 1 = x2 + x0 + x2 + 1 (basically 0). This supports
the statement of Conjecture 4.1.

We have also checked that the Conjecture 4.1 is true considering products of two primitive
polynomials f1(x), f2(x) having degree d1, d2 (mutually coprime) for d1, d2 ≤ 6.

Remark 4.1 Let us once again consider the model where outputs of several LFSRs are com-
bined using a nonlinear Boolean function of n variables to produce the key stream. Consider
that the combining Boolean function is (k− 1)th order correlation immune (see [1]). Thus it
is possible to mount a correlation attack by considering the product of polynomials fr(x), r =
1, . . . , k corresponding to k inputs of the Boolean function. Thus to execute the attack one
has to consider the t-nomial multiples of

∏k
r=1 fr(x). At this point consider the t-nomial mul-

tiples considered in Theorem 4.1. Once we get a t-nomial multiple xI1 + xI2 + . . .+ xIt−1 + 1
of
∏k
r=1 fr(x), we know when we reduce it as xI1 mod er + xI2 mod er + . . . + xIt−1 mod er + 1,

then we will get a t-nomial multiple (having degree < er) of fr(x). On the other hand, if we
consider any t-nomial multiple xI1 +xI2 + . . .+xIt−1 +1 of

∏k
r=1 fr(x), which is not considered

in Theorem 4.1, then for some r, xI1 mod er + xI2 mod er + . . . + xIt−1 mod er + 1, will not be a
“genuine” t-nomial multiple (having degree < er) of fr(x) (i.e., all the terms will not be
distinct). That is we will get either some u such that Iu = 0 mod er or get some u 6= v, such
that Iu = Iv mod er. Thus from cryptographic point of view, only the multiples considered in
Theorem 4.1 are to be considered.

5 Degree distribution of t-nomial multiples of product

of primitive polynomials

From the cryptanalytic point of view, it is important to find out the t-nomial multiples (of
product of primitive polynomials) having lower degrees. One way to obtain the minimum
degree t-nomial multiple of product of polynomials is to start checking the t-nomials from
lower to higher degrees and see when the first time we get one t-nomial multiple. This
provides the minimum degree t-nomial multiple of product of the polynomials. Similar
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method can be continued further to find out more multiples. On the other hand, to resist
cryptanalytic attack, it is important to select primitive polynomials such that they won’t
have a t-nomial multiple at lower degree for small t, say t ≤ 10. Thus it is important to
analyse the degree distribution of t-nomial multiples of product of primitive polynomials.

Let us now concentrate on the case when the primitive polynomials are of degree pairwise
coprime. We like to estimate how the degree of the t-nomial multiples are distributed.
Consider a primitive polynomial fr(x) of degree dr. It has Ndr,t many t-nomial multiples of
degree < 2dr − 1. Now we like to highlight the following points.

1. Consider t-nomial multiples of the form xp1,r + xp2,r + . . . + xpt−1,r + 1 of a primitive
polynomial fr(x). Note that p1,r, p2,r, . . . , pt−1,r are not ordered and they are distinct
mod er. Experimental study shows that the values p1,r, p2,r, . . . , pt−1,r are uniformly
distributed in the range 1, 2, . . . , 2dr − 2 = er − 1 for each r.

2. Then using Chinese remainder theorem (see the proof of Theorem 4.1), we find out
that f1(x)f2(x) . . . fk(x) divides xI1 +xI2 + . . .+xIt−1 +1 which has degree < e1e2 . . . ek.
Now in the proof of Theorem 4.1, it is clear that the value Ij is decided from the values
pj,r’s for r = 1, . . . , k. Since, pj,r’s are uniformly distributed and Chinese remainder
theorem provides a bijection from Ze1 ×Ze2 × . . .×Zek to Ze1e2...ek , it is expected that
the values I1, I2, . . . , It−1 are uniformly distributed in the range 1, 2, . . . , e1e2 . . . ek− 1.
Here Za is the set of integers from 0 to a− 1.

3. The distribution of the degrees of the t-nomial multiples of f1(x)f2(x) . . . fk(x) is the
distribution of max(I1, . . . , It−1). It can be assumed that the values I1, I2, . . . , It−1 are
chosen uniformly from the range 1, . . . , (2d1 − 1)(2d2 − 1) . . . (2dk − 1)− 1.

Product < 15 < 25 < 35 < 45 < 55 < 65 < 75 < 85 < 95 < 105

10101101 0.0238 0.0714 0.1429 0.1429 0.2619 0.3571 0.5476 0.6429 0.7857 1.0000
11000111 0.0000 0.0476 0.1190 0.1905 0.3095 0.3810 0.5238 0.6190 0.7857 1.0000
11100011 0.0000 0.0476 0.1190 0.1905 0.3095 0.3810 0.5238 0.6190 0.7857 1.0000
10110101 0.0238 0.0714 0.1429 0.1429 0.2619 0.3571 0.5476 0.6429 0.7857 1.0000
t = 3 0.0170 0.0515 0.1047 0.1766 0.2672 0.3764 0.5043 0.6509 0.8161 1.0000

10101101 0.0014 0.0110 0.0329 0.0719 0.1349 0.2295 0.3568 0.5253 0.7370 1.0000
11000111 0.0021 0.0103 0.0308 0.0733 0.1349 0.2288 0.3575 0.5247 0.7370 1.0000
11100011 0.0021 0.0103 0.0308 0.0733 0.1349 0.2288 0.3575 0.5247 0.7370 1.0000
10110101 0.0014 0.0110 0.0329 0.0719 0.1349 0.2295 0.3568 0.5253 0.7370 1.0000
t = 4 0.0020 0.0111 0.0329 0.0727 0.1362 0.2288 0.3560 0.5232 0.7361 1.0000

10101101 0.0002 0.0021 0.0095 0.0298 0.0689 0.1388 0.2487 0.4196 0.6644 1.0000
11000111 0.0003 0.0024 0.0100 0.0293 0.0677 0.1378 0.2493 0.4204 0.6644 1.0000
11100011 0.0003 0.0024 0.0100 0.0293 0.0677 0.1378 0.2493 0.4204 0.6644 1.0000
10110101 0.0002 0.0021 0.0095 0.0298 0.0689 0.1388 0.2487 0.4196 0.6644 1.0000
t = 5 0.0002 0.0023 0.0101 0.0295 0.0688 0.1382 0.2502 0.4196 0.6632 1.0000

10110101 0.0000 0.0005 0.0030 0.0118 0.0345 0.0829 0.1752 0.3356 0.5968 1.0000
11100011 0.0000 0.0005 0.0031 0.0118 0.0345 0.0829 0.1751 0.3356 0.5968 1.0000
11000111 0.0000 0.0005 0.0031 0.0118 0.0345 0.0829 0.1751 0.3356 0.5968 1.0000
10101101 0.0000 0.0005 0.0030 0.0118 0.0345 0.0829 0.1752 0.3356 0.5968 1.0000
t = 6 0.0000 0.0005 0.0030 0.0118 0.0344 0.0829 0.1752 0.3357 0.5969 1.0000

11100011 0.0000 0.0001 0.0009 0.0047 0.0171 0.0494 0.1221 0.2679 0.5365 1.0000
10110101 0.0000 0.0001 0.0009 0.0047 0.0170 0.0494 0.1222 0.2679 0.5365 1.0000
11000111 0.0000 0.0001 0.0009 0.0047 0.0171 0.0494 0.1221 0.2679 0.5365 1.0000
10101101 0.0000 0.0001 0.0009 0.0047 0.0170 0.0494 0.1222 0.2679 0.5365 1.0000
t = 7 0.0000 0.0001 0.0009 0.0047 0.0170 0.0494 0.1221 0.2679 0.5366 1.0000

Table 3. Degree distribution for t-nomial multiples of product of degree 3 and degree 4
primitive polynomials.

To analyse the degree distribution of these t-nomial multiples of the products of primitive
polynomials, let us consider the random variate X(d1,...,dk),t, which is max(I1, . . . , It−1), where
xI1 +xI2 + . . .+xIt−1 +1 is a t-nomial multiple of f1(x)f2(x) . . . fk(x). Let δ = (2d1−1)(2d2−
1) . . . (2dk − 1). On the other hand, consider all the (t − 1)-tuples < I1, . . . , It−1 >, in the
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range 1 to δ − 1. There are
(
δ−1
t−1

)
such tuples. Consider the random variate Y (d1,...,dk),t,

which is max(I1, . . . , It−1), where < I1, . . . , It−1 > is any ordered t-tuple from the values 1 to
δ − 1. With the above explanation and following experimental studies, we consider that the
distributions X(d1,...,dk),t, Y (d1,...,dk),t are very close.

Let us first concentrate on the experimental results presented in Table 3. We consider
the degree distribution of t-nomial multiples of product of primitive polynomials of degree
3 and 4. The product polynomials of degree 7 are presented in the leftmost column of the
table. As example (x3 + x + 1)(x4 + x + 1) = x7 + x5 + x3 + x2 + 1 is represented as
10101101. The exponent of the polynomial x7 +x5 +x3 +x2 +1 is (23−1)(24−1) = 105. We
present the proportion of t-nomial multiples of degree < 15, 25, . . . , 105, where t = 3, 4, 5, 6, 7.
Corresponding to each t, we also present the proportion

(
c
t−1

)
/
(
δ−1
t−1

)
in the last row. Here,

δ = 105 and c = 14, 24, . . . , 104. Table 3 clearly identifies the closeness of the distributions
X(d1,...,dk),t, Y (d1,...,dk),t. Similar support is available from the Table 4 which considers the
t-nomial multiples (for t = 3, 4, 5) of product of degree 4 and degree 5 primitive polynomials.

Consider two set of primitive polynomials f1(x), . . . , fk(x) and g1(x), . . . , gk(x) of degree
d1, . . . , dk (pairwise coprime), such that each fr(x) and gr(x) are reciprocal to each other.
Consider the multiset U(f1(x) . . . fk(x), d1, . . . , dk, t), which contains the degree of all the
t-nomial multiples (having degree < (2d1 − 1) . . . (2dk − 1)) of f1(x) . . . fk(x). Now we have
the following result similar to Lemma 3.2.

Lemma 5.1 U(f1(x) . . . fk(x), d1, . . . , dk, t) = U(g1(x) . . . gk(x), d1, . . . , dk, t).

Since, U(f1(x) . . . fk(x), d1, . . . , dk, t) = U(g1(x) . . . gk(x), d1, . . . , dk, t), the statistical pa-
rameters based on U(f1(x) . . . fk(x), d1, . . . , dk, t), and U(g1(x) . . . gk(x), d1, . . . , dk, t) are ex-
actly same. In Table 3, it is clear that the entries corresponding to the multiples f1(x)f2(x)
and g1(x)g2(x) are same where f1(x), g1(x) are reciprocal and and f2(x), g2(x) are also re-
ciprocal. Thus, in Table 4, we put only one row corresponding to each such pair.

Product < 30 < 65 < 115 < 165 < 215 < 265 < 315 < 365 < 415 < 465
1101011101 0.0000 0.0286 0.0571 0.1238 0.2095 0.3238 0.4524 0.6095 0.7905 1.0000
1111110001 0.0048 0.0190 0.0619 0.1143 0.2238 0.3238 0.4333 0.6238 0.7952 1.0000
1011111111 0.0000 0.0143 0.0619 0.1333 0.2190 0.3238 0.4619 0.6095 0.7810 1.0000
1001010011 0.0048 0.0190 0.0667 0.1143 0.2190 0.3286 0.4524 0.6286 0.7952 1.0000
1110100111 0.0095 0.0190 0.0571 0.1286 0.2286 0.3238 0.4571 0.6095 0.7952 1.0000
1000000101 0.0095 0.0143 0.0524 0.1286 0.2000 0.3190 0.4571 0.6190 0.7952 1.0000

t = 3 0.0040 0.0188 0.0600 0.1244 0.2122 0.3232 0.4575 0.6150 0.7959 1.0000

1101011101 0.0002 0.0023 0.0145 0.0434 0.0969 0.1835 0.3090 0.4819 0.7099 1.0000
1111110001 0.0002 0.0025 0.0142 0.0434 0.0969 0.1834 0.3083 0.4820 0.7099 1.0000
1011111111 0.0002 0.0025 0.0146 0.0433 0.0977 0.1832 0.3091 0.4820 0.7097 1.0000
1001010011 0.0002 0.0023 0.0146 0.0428 0.0973 0.1835 0.3088 0.4820 0.7100 1.0000
1110100111 0.0003 0.0023 0.0145 0.0434 0.0973 0.1830 0.3093 0.4821 0.7099 1.0000
1000000101 0.0004 0.0022 0.0142 0.0433 0.0966 0.1829 0.3086 0.4820 0.7098 1.0000

t = 4 0.0002 0.0025 0.0145 0.0436 0.0974 0.1833 0.3089 0.4819 0.7098 1.0000

1101011101 0.0000 0.0003 0.0035 0.0152 0.0446 0.1038 0.2085 0.3774 0.6328 1.0000
1111110001 0.0000 0.0003 0.0035 0.0153 0.0445 0.1037 0.2086 0.3773 0.6328 1.0000
1011111111 0.0000 0.0003 0.0035 0.0152 0.0445 0.1038 0.2084 0.3774 0.6329 1.0000
1001010011 0.0000 0.0003 0.0035 0.0153 0.0445 0.1037 0.2085 0.3773 0.6328 1.0000
1110100111 0.0000 0.0003 0.0035 0.0152 0.0445 0.1037 0.2084 0.3774 0.6328 1.0000
1000000101 0.0000 0.0003 0.0035 0.0152 0.0446 0.1038 0.2084 0.3774 0.6328 1.0000

t = 5 0.0000 0.0003 0.0035 0.0152 0.0446 0.1038 0.2084 0.3774 0.6328 1.0000

Table 4. Degree distribution for t-nomial multiples of product of degree 4 and degree 5
primitive polynomials.

Now we present the following result. The proof is similar to the proof of Lemma 3.1.

Lemma 5.2 Let δ = (2d1 − 1)(2d2 − 1) . . . (2dk − 1). The average of the values in Y (d1,...,dk),t

is t−1
t
δ. Moreover, the average of squares of the values in Y (d1,...,dk),t is t−1

t
δ( t(δ+1)

t+1
− 1).
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In the Table 5, we present the exact data for multiples of products of primitive polyno-
mials. We consider the product of primitive polynomials having degree (3, 4), (3, 5) and (4,
5). The product polynomials are presented in the leftmost column of the table. In each cell,
we present the experimental values for the distribution X(d1,d2),t. We present the average of
the degrees and average of the squares of the degrees of t-nomial multiples in the same cell of
the table. We also present the estimated values in the tables which gives the results related
to the distribution Y (d1,d2),t. It is clear from the table that for the set of experiments we have
done, the results related to the distributions X(d1,d2),t and Y (d1,d2),t are very close.

Product polynomial t = 3 t = 4 t = 5
10110101 70.00, 5530.00 78.75, 6595.27 84.00, 7335.44
11100011 70.00, 5530.00 78.75, 6595.15 84.00, 7334.90
Estimated 70.00, 5565.00 78.75, 6678.00 84.00, 7420.00

101000111 144.67, 23580.67 162.75, 28212.40 173.60, 31363.62
100110011 144.67, 23580.67 162.75, 28214.39 173.60, 31362.93
100001001 144.67, 23580.67 162.75, 28213.60 173.60, 31363.82
110101111 144.67, 23580.67 162.75, 28213.88 173.60, 31363.46
111100001 144.67, 23580.67 162.75, 28214.15 173.60, 31362.90
111100001 144.67, 23580.67 162.75, 28216.71 173.60, 31363.33
Estimated 144.67, 23653.00 162.75, 28383.60 173.60, 31537.33

1101011101 310.00, 108190.00 348.75, 129651.90 372.00, 144087.34
1101011101 310.00, 108190.00 348.75, 129659.90 372.00, 144087.41
1101011101 310.00, 108190.00 348.75, 129656.72 372.00, 144086.58
1101011101 310.00, 108190.00 348.75, 129652.81 372.00, 144087.51
1101011101 310.00, 108190.00 348.75, 129652.43 372.00, 144087.20
1101011101 310.00, 108190.00 348.75, 129657.92 372.00, 144087.93
Estimated 310.00, 108345.00 348.75, 130014.00 372.00, 144460.00

Table 5. Average of degree and average of degree square of t-nomial multiples for product
of primitive polynomials.

We like to present the following observations from the Table 5, which is related to the
distribution X(d1,...,dk),t.
1. The average of degree of the t-nomial multiples of

∏k
r=1 fr(x) is fixed and it is equal to

t−1
t
δ, where δ is the exponent of

∏k
r=1 fr(x).

2. The average of the square of degree of the trinomial multiples of
∏k
r=1 fr(x) is fixed but

not exactly equal to the estimated value.
From [5, Section 2], we get that it is possible to approximate Ndr,t as 1

(t−1)!
2dr(t−2).

Now let us concentrate on Corollary 4.4 and for the reason mentioned in Remark 4.1 we
are mainly interested in the count ((t − 1)!)k−1∏k

r=1 Ndr,t. Thus putting the approxima-
tion Ndr,t as 1

(t−1)!
2dr(t−2), we get ((t − 1)!)k−1∏k

r=1 Ndr,t ≈ ((t − 1)!)k−1∏k
r=1

1
(t−1)!

2dr(t−2) =

1
(t−1)!

2(
∑k

r=1
dr)(t−2) = 1

(t−1)!
2d(t−2), where d =

∑k
r=1 dr, is the degree of

∏k
r=1 fr(x).

Remark 5.1 Consider a primitive polynomial f(x) having degree d and a polynomial g(x),
which is product of k different primitive polynomials with degree d1, . . . , dk (pairwise co-
prime), where d = d1 + . . .+ dk. From the above discussion, it follows that the approximate
count of the t-nomial multiples of f(x) and g(x) are close.

Consider that we try to find out the lowest degree t-nomial multiple of the product polyno-
mial

∏k
r=1 fr(x). Consider this will be of degree c. Thus we expect (

(
c
t−1

)
/
(

δ
t−1

)
)
∏k
r=1 Ndr,t ≈

1, i.e., (
(

c
t−1

)
/
(

δ
t−1

)
) 1

(t−1)!
2d(t−2) ≈ 1. Now δ =

∏k
r=1(2dr − 1) ≈ 2d. Then we get that

c ≈ 2
d
t−1 .

Note that the attacks presented by finding out t-nomial multiples of product of primi-
tive polynomials require at least one t-nomial multiple. Consider a scheme using primitive
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polynomials of degree > 128. If the designer uses an 8-input, 3-resilient Boolean function,
then attacker has to consider product of at least 4 primitive polynomials. Thus the degree
of the product polynomial will be > 512. In such a scenario, the degree of the lowest degree
t-nomial multiple (of the product polynomial) will be approximately as large as 2256, 2170, 2128

for t = 3, 4, 5 respectively. This shows that in such a situation the attacks presented in this
direction (see for reference [1]) will not succeed in practical sense. However, for t = 17, the
approximate degree of the lowest degree t-nomial multiple will be 232, which is in practical
limit. Thus, the work presented in this paper clearly identifies how the parameters should be
chosen for safe design of stream cipher systems based on nonlinear combiner model. On the
other hand, existing systems can also be revisited to see whether those are still secured given
the computational power available now a days and the analysis presented in this paper.
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