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Abstract

Packet monitoring arguably needs the flexibility of
open architectures and active networking. In earlier work
we have implemented FLAME, an open monitoring sys-
tem, that balanced flexibility and safety while attempt-
ing to achieve high performance by combining the use of
a type-safe language, lightweight run-time checks, and
fine-grained policy restrictions.

We seek to understand the range of applications, work-
loads, and traffic, for which a safe, open, traffic monitor-
ing architecture is practical. To that end, we investigated
a number of applications built on top of FLAME. We use
measurement data and analysis to predict the workload at
which our system cannot keep up with incoming traffic.
We report on our experience with these applications, and
make several observations on the current state of open
architecture applications.

1 Introduction

The bulk of research on Active Networks [28] has been
directed towards building general infrastructure [1, 30],
with relatively little research driven by the needs of
particular applications. Recently the focus has shifted
slightly as researchers have begun to investigate is-
sues such as safety, extensibility, performance, and re-
source control, from the perspective of specific applica-
tions [4, 22].

Network traffic monitoring is one such application.
[3, 4] makes the case that network traffic monitoring
can benefit greatly from a monitoring infrastructure with
an open architecture, as static implementations of moni-
toring systems are unable to keep up with evolving de-
mands. The first big problem is that, in many cases,
monitoring is required at multiple points in the network.
No distributed monitoring infrastructure is currently de-
ployed, so monitoring must typically take place at the
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few nodes, such as routers, that already monitor traffic
and export their results. While routers do offer built-
in monitoring functionality, router vendors only imple-
ment monitoring functions that are cost-effective: those
that are interesting to the vast majority of possible cus-
tomers. If one needs functions that are not part of the
common set, then there may be no way to extract the
needed data from the routers. Furthermore, as customer
interests evolve, the router vendors can only add moni-
toring functionality on the time-scale of product design
and release; it can be months or years from the time cus-
tomers first indicate interest until a feature makes it into
a product. Therefore, the need for timely deployment
cannot always be met at the current pace of standardiza-
tion or software deployment, especially in cases such as
detection and prevention of denial-of-service attacks.

In response to these problems, several prototype ex-
tensible monitoring systems [18, 4, 3, 14] have been de-
veloped. One basic goal of such approaches is to allow
the use of critical system components by users other than
the network operator. However, providing users with the
ability to run their own modules on nodes distributed
throughout the network requires extensible monitoring
systems to provide protection mechanisms.

Flexible protection mechanisms, and other methods of
enforcing safety, are essential for extensible monitoring
systems for two reasons. First, users, such as researchers
who want to study network behavior, should not have
access to all the data passing through a router. Rather,
fine-grained protection is needed to allow the system to
enforce policy restrictions, e.g., ensuring privacy by lim-
iting access to IP addresses, header fields, or packet con-
tent. Second, protection from interference is needed to
guard against poorly implemented (or malicious) mod-
ules which could otherwise hurt functions that may be
critical to the operation of the network infrastructure.

The thrust of our research is to determine whether pro-
grammable traffic monitoring systems that are flexible
enough to be useful, and safe enough to be deployed,
can perform well enough to be practical.

In LAME [4] we demonstrated that it is possible to
build an extensible monitoring system using off-the-shelf
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components. Further investigation demonstrated perfor-
mance problems with the use of off-the-shelf compo-
nents in LAME. Our follow-on project, FLAME, pre-
sented a design that preserved the safety properties of
LAME, but was designed for high performance. FLAME
combines several well-known mechanisms for protection
and policy control; in particular, the use of a type-safe
language, custom object patches for run-time checks,
anonymizing, and namespace protection based on trust
management.

The purpose of the study in this paper is to under-
stand the range of applications and traffic rates for which
a safe, open, traffic monitoring architecture is practical.
In [3] we presented preliminary results that demonstrated
that FLAME largely eliminated the performance prob-
lems of LAME. We have implemented a number of addi-
tional test applications and have used them as our ex-
perimental workload. We use the data collected from
these applications to quantify and analyze the perfor-
mance costs, and to predict the workload at which our
system will no longer be able to keep up with incoming
traffic.

The general tenor of the results reported here (al-
though not the specific numbers) should be more widely
applicable than just to FLAME. For example, the Open
Kernel Environment (OKE) of Bos and Samwel [6]
adopts a similar approach to FLAME. The OKE de-
signers also carefully considered the interaction between
safety features and performance implications. OKE,
among other features, provides additional flexibility
through the use of trust-controlled elastic language ex-
tensions. These extensions provide increased control
over the tradeoffs between safety and performance, as,
for example, certain checks which are hard-wired in our
design can be eliminated, if appropriate trust credentials
are provided. The work reported in this paper should give
some indications about the workload supportable by sys-
tems such as OKE, also.

The rest of this paper is structured as follows. A brief
overview of the FLAME architecture, including protec-
tion mechanisms, is given in Section 2. In Section 3 we
study the performance trade-offs of the resulting system,
and we conclude in Section 4.

2 Overview of the FLAME architecture

The architecture of FLAME is shown in Figure 1. A
more detailed description is available in [3]. Modules
consist of kernel-level code ��� , user-level code ��� , and
a set of credentials � � . Module code is written in Cy-
clone [16] and is processed by a trusted compiler upon
installation. The kernel-level code takes care of time-
critical packet processing, while the user-level code pro-
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Figure 1: FLAME Architecture

vides additional functionality at a lower time scale and
priority. This is needed so applications can communicate
with the user or a management system (e.g., using the
standard library, sockets, etc.).

There has been a small architectural modification to
FLAME since the publication of [3], after experimenta-
tion under high load. The original FLAME architecture
interacted with the network interface exclusively through
interrupts. As others have noted [19, 27], under high
rates of incoming network traffic, interrupt handling can
degrade performance. More recent versions of FLAME
poll the network interface card (NIC) to read packets to
avoid performance degradation. Note that the polling
technique and the resulting performance improvement is
well known and does not represent a contribution of this
paper.

In terms of deployment, the system can be used as a
passive monitor e.g. by tapping on a network link by
means of an optical splitter, or using port mirroring fea-
tures on modern switches. Ideally, a FLAME -like sub-
system would be part of an enhanced router interface
card. A preliminary study shows how such a subsystem
can be built using a network processor board [2]. For the
purposes of this paper, we consider FLAME in a passive
monitor set-up.

The basic approach is to use the set of credentials, ��� ,
at compile time to verify that the module is allowed by
system policy to perform the functions it requests. The
dark units in Figure 1 beside each � � represent code that
is inserted before each module code segment for enforc-
ing policy-related restrictions. These units appropriately
restrict access of modules to packets or packet fields, pro-
vide selective anonymization of fields, and so on.

For allowing user code to safely execute inside the
operating system kernel, the system needs to guard
against excessive execution time, privileged instructions,
exceptions and random memory references. There has
been extensive work in the operating system and lan-
guage communities that addresses the above problems
(c.f. [25, 9, 31]). FLAME leverages these techniques to
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satisfy our security needs.

Bounding Execution Time. For bounding execution
time we take an approach similar to [12]: we augment
the backward jumps with checks to a cycle counter;
if the module exceeds its allocated execution time we
jump to the next module. On the next invocation,the
module can consult an appropriately set environment
variable to check if it needs to clean-up data or exit with
an error. This method adds an overhead of 5 assembly
instructions for the check. If the check succeeds there
is an additional overhead of 6 instructions to initiate the
jump to the next module.

Exceptions. We modified the trap handler of the
operating system to catch exceptions originating from
the loaded code. Instead of causing a system panic we
terminate the module and continue with the following
one.

Privileged Instructions and Random Memory
References. We use Cyclone [16] to guard against in-
structions that may arbitrarily access memory locations
or may try to execute privileged machine instructions.
Cyclone is a language for C programmers who want
to write secure, robust programs. It is a dialect of C
designed to be safe: free of crashes, buffer overflows,
format string attacks, and so on. All Cyclone programs
must pass a combination of compile-time, link-time and
run-time checks to ensure safety.

Policy control. Before installing a module in our system
we perform policy compliance checks1 on the credentials
this module carries. The checks determine the privileges
and permissions of the module. In this way, the network
operator is able to control what packets a module can ac-
cess, what part of the packet a module is allowed to view
and in what way, what amount of resources (processing,
memory, etc.) the module is allowed to consume on the
monitoring system, and what other functions (e.g., socket
access) the module is allowed to perform.

3 Experiments

This section describes a number of applications that
we have implemented on FLAME and then presents
three sets of experiments. The first involves the deploy-
ment of the system in a laboratory testbed, serving as a
proof of concept. The second looks at issues of the un-
derlying infrastructure, in order to specify the capacity of
our system on Gbit/s links. The third set of experiments
provides a picture of the processing cost of our example
applications, and protection overheads.

1Our policy compliance checker uses the KeyNote [5] system.

3.1 Applications

We present examples of applications that a) are widely
regarded as useful but appear to be stalled in the stan-
dardization process (trajectory sampling), b) would be
difficult to deploy in time to be useful (worm detection)
and c) may be valuable in certain situations but may
not be globally useful to make it worth implementing in
routers (RTT analysis, LRD analysis).

Trajectory sampling. Trajectory sampling, developed
by Duffield and Grossglauser [11], is a technique for co-
ordinated sampling of traffic across multiple measure-
ment points, effectively providing information on the
spatial flow of traffic through a network. The key idea
is to sample packets based on a hash function over the
invariant packet content (e.g. excluding fields such as
the TTL value that change from hop to hop) so that the
same packet will be sampled on all measured links. Net-
work operators can use this technique to measure traffic
load, traffic mix, one-way delay and delay variation be-
tween ingress and egress points, yielding important in-
formation for traffic engineering and other network man-
agement functions. Although the technique is simple to
implement, we are not aware of any monitoring system
or router implementing it at this time.

We have implemented trajectory sampling as a
FLAME module that works as follows. First, we com-
pute a hash function ���������
	������������� on the in-
variant part 	������ of the packet. If ����������� , where
����� controls the sampling rate, the packet is not pro-
cessed further. If ����������� we compute a second hash
function  !����� on the packet header that, with high prob-
ability, uniquely identifies a flow with a label (e.g. TCP
sequence numbers are ignored at this stage). If this is
a new flow, we create an entry into a hash table, stor-
ing flow information (such as IP address, protocol, port
numbers etc.). Additionally, we store a timestamp along
with ������� into a separate data structure. If the flow al-
ready exists, we do not need to store all the information
on the flow, so we just log the packet. For the purpose of
this study we did not implement a mechanism to transfer
logs from the kernel to a user-level module or manage-
ment system; at the end of the experiment the logs are
stored in a file for analysis.

Round-trip time analysis. We have implemented a
simple application for obtaining an approximation of
round-trip delays for TCP connections passing through
a link. The round-trip delay is an important metric for
understanding end-to-end performance due to its role in
TCP congestion control [17]. Additionally, measuring
the round-trip times observed over a specific ISP pro-
vides a reasonable indication of the quality of the service
provider’s infrastructure, as well as its connectivity to the
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rest of the Internet. Finally, observing the evolution of
round-trip delays over time can be used to detect network
anomalies on shorter time scales, or to observe the vari-
ation in service quality over longer periods of time. For
example, an operator can use this tool to detect service
degradation or routing failures in an upstream provider,
and take appropriate measures (e.g., redirecting traffic to
a backup provider) or simply have answers for user ques-
tions.

The implementation is both simple and efficient. We
watch for TCP SYN packets indicating a new connection
request, and watch for the matching TCP ACK packet (in
the same direction). The difference in time between the
two events provides a reasonable approximation of the
round-trip time between the two ends of the connection.
2 For every SYN packet received, we store a timestamp
into a hash-table. As the first ACK after a SYN usu-
ally has a sequence number which is the SYN packet’s
sequence number plus one, this number is used as the
key for hashing. Thus, in addition to watching for SYN
packets, the application only needs to look into the hash
table for every ACK received. The hashtable can be ap-
propriately sized depending on the number of flows and
the desired level of accuracy. A different algorithm that
computes both RTTs and RTOs, but is significantly more
complex and is not appropriate for real-time measure-
ment, as well as an alternative, wavelet-based method
are described in [13]. Note that this approach does not
apply to parallel paths where SYN and ACK may be for-
warded on different links. Retransmission of the SYN
packet does not affect measurement, as the timestamp
in the hashtable will be updated. Retransmission of an
ACK packet introduces error when the first ACK is not
recorded. If this happens rarely, then this error does not
affect the overall RTT statistics. If happening frequently,
due to a highly congested link, this will be reflected in
the overall statistics, and should be interpreted accord-
ingly (there will be a cluster of samples around typical
TCP Timeout values).

Note that if both directions of the link are observed,
one could obtain more information by additionally tim-
ing the SYN ACK packet, providing additional informa-
tion such as the difference in round-trip times between
the two sides of the link. We did not implement such
functionality for the purpose of this paper.

Worm detection. The concept of “worms” and tech-
niques to implement them have existed since the early
descriptions in [7, 26]. A worm compromises a system

2Factors such as operating system load on the two end-points can
introduce error. We do not expect these errors to distort the overall pic-
ture significantly, at least for the applications discussed here. These ap-
plications take statistics over a number of samples, so individual errors
will not significantly alter the result. In fact, individually anomalous
samples can be used to indicate server overload or other phenomena.

such as a Web server by exploiting system security vul-
nerabilities; once a system has been compromised the
worm attempts to replicate by “infecting” other hosts.
Recently, the Internet has observed a wave of “worm”
attacks [20]. The “Code Red” worm and its variants in-
fected over 300,000 servers in July-August 2001.

This attack can be locally detected and prevented if the
packet monitor can obtain access to the TCP packet con-
tent. Unfortunately, most known packet monitors only
record the IP and TCP header and not the packet pay-
load. We have implemented a module to scan packets for
the signature of one strain of “Code Red” (the random
seed variant):

... GET /default.ida?NNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNN .....

If this signature is matched, the source and destination IP
addresses are recorded and can be used to take further ac-
tion (such as blocking traffic from attacking or attacked
hosts etc.). Despite the ability to locally detect and pro-
tect against worms, widespread deployment of an exten-
sible system such as FLAME would still have improved
the fight against the virus. It is worth noting that the
“Code Red” worm attacked the Internet by exploiting a
security bug less than 4 weeks after the bug was first dis-
covered. The worm attacked over 300,000 hosts within
a brief period after it was first launched. Only the most
supple virus detection systems are likely to be able to
respond promptly enough to have shut down this threat.
While most intrusion detection systems do provide rule-
based extensibility, it is unlikely, had code-red been more
malicious, that the correct rules could have been applied
on time.

On the other hand, we know of a mechanism that is
able to deliver virus defenses at least as fast as the worm
— another worm. A safe open architecture system can
allow properly authenticated worms (from, say, CERT)
to spread the defense against a malicious worm. In the
future, detecting a worm may not be as simple as search-
ing for a fixed signature, and more complicated detec-
tion and protection programs may require the flexibility
of programmable modules.

In general, providing a general-purpose packet moni-
toring system is likely to reduce cost due to the shared
nature of the infrastructure, increase impact by coupling
the function with network management (to allow, for ex-
ample, traffic blocking) and result in more wide-spread
deployment and use of such security mechanisms.

Real-time estimation of long-range dependence pa-
rameters. Roughan et al. [24] proposed an efficient al-
gorithm for estimating long-range dependence parame-
ters of network traffic in real-time. These parameters di-
rectly capture the variability of network traffic and can be
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Figure 2: Network configuration used for experiments.

used, beyond research, for purposes such as measuring
differences in variability between different traffic classes
and characterizing service quality. We have ported the
algorithm to Cyclone and implemented the appropriate
changes to allow execution as a module on the FLAME
system. Some modifications were needed for satisfying
Cyclone’s static type checker and providing appropriate
input, e.g., traffic rates over an interval. The primary dif-
ference between this module and the other applications
is that separate kernel and user space components were
needed. This requirement arises because the algorithm
involves two loops: the inner loop performs lightweight
processing over a number of samples, while the outer
loop performs the more computationally intensive task
of taking the results and producing the estimate. As the
system cannot interrupt the kernel module and provide
scheduling, the outer loop had to be moved to user space.

3.2 Experiment setup

The testbed used for our experiments involves two
sites: a local test network at Penn, and a remote LAN
connecting to the Internet through a DSL link. The
minimum round-trip delay between the two sites is 24
ms. The test network at Penn consists of 4 PCs con-
nected to an Extreme Networks Summit 1i switch. The
switch provides port mirroring to allow any of its links
to be monitored by the FLAME system on one of the
PCs. All PCs are 1 GHz Intel Pentium III with 512
MB memory, OpenBSD 2.9 operating system except for
the monitoring capacity experiments where we used the
Click [21] code under Linux 2.2.14 on the sending host.
The FLAME system uses the Intel PRO/1000SC Gigabit
NIC.

3.3 Testbed demonstration

In this section we demonstrate the use of the round-
trip delay analysis and trajectory sampling modules on

our experimental setup. We have installed the round-trip
delay analysis module on the two FLAME monitors, on
the remote LAN and the PENN test network. We initi-
ated wget to recursively fetch pages, starting from the
University of Pennsylvania main web server. In this way
we created traffic to a large number of sites reachable
through links on the starting Web page. The experiment
was started concurrently on both networks to allow us to
compare the results. One particular view of 5374 con-
nections over a one-hour period is presented in Figure 4,
clearly showing the difference in performance which is
partly due to the large number of local or otherwise well
connected sites that are linked through the University’s
Web pages.

We also executed the trajectory sampling module and
processed the data collected by the module to measure
the one way delay for packets flowing between the two
networks. The clocks at the two monitors were synchro-
nized using NTP prior to the experiment. The results are
shown in Figure 3. Note that this is different from simply
using ping to sample delays, as we measure the actual
delay experienced by network traffic. The spike shows
our attempt to overload the remote LAN using UDP traf-
fic.

3.4 System performance, workload analysis,
and safety overheads

We determine how many processing cycles are avail-
able for executing monitoring applications at different
traffic rates. We report on the performance of FLAME
with and without the interface polling enhancement as
well as LAME.

The experiment is designed as follows. Two sender
PCs generate traffic to one sink, with the switch config-
ured to mirror the sink port to the FLAME monitor. The
device driver on the FLAME system is modified to dis-
able interrupts and the FLAME system is instrumented to
use polling for reading packets off the NIC. To generate
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traffic at different rates, we use the Click modular router
system under Linux on the sending side. All experiments
involve 64 byte UDP packets. The numbers are deter-
mined by inserting a busy loop into a null monitoring
module consuming processing cycles. The sending rate
is adapted downward until no packets are dropped at the
monitor. This may seem overly conservative, because
packet losses occur when even one packet is delivered
to FLAME too early. However, the device driver allo-
cates 256 RxDescriptors for the card to store 2K packets.
Therefore the card can buffer short-term bursts that ex-
ceed the average rate without incurring packet loss, but
cannot tolerate sustained rates above the limit. In Fig-
ure 5 we show the number of processing cycles avail-
able at different traffic rates, for LAME, FLAME without
polling, and FLAME with polling enabled.

There are two main observations to make on these re-
sults. First, as expected, the polling system performs sig-
nificantly better, roughly 2.5 times better than the non-
polling system. Second, the number of cycles available
for applications to consume, even at high packet rates,
appears reasonable. In the next sections we will discuss
these figures in light of the processing needs of our ex-
perimental applications.

To obtain an rough estimate of the processing cost for
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Module gcc Cyclone Cyclone Cyclone
protection protection

optimized

Traj.smpl. 381 10.2% 20.2% 12.8%
RTT est. 183 12.4% 15.3% 15.3%
Worm det. 24 83.3% 125% 83.3%
LRD est. 143 7.6% 10.4% 9%

Figure 6: Module processing costs (in cycles), Cyclone
overhead, FLAME protection overhead, and optimization
effect.

each application, we instrumented the application mod-
ules using the Pentium performance counters. We read
the value of the Pentium cycle counter before and after
execution of application code for each packet. Due to
lack of representative traffic on our laboratory testbed,
we fed the system with packets using the Auckland-II
packet trace provided by NLANR and the WAND re-
search group. The measurements were taken on a 1
GHz Intel Pentium III with 512 MB memory, OpenBSD
2.9 operating system, gcc version 2.95.3, and Cyclone
version 0.1.2.

We compare the processing cost of a pure C version of
each application to the Cyclone version, with and with-
out protection, and using additional optimizations to re-
move or thin the frequency of backward jumps (these
modifications were done by hand). We measure the me-
dian execution time of each module over 113 runs. The
results from this experiment are summarized in Table 6.

There are four main observations to make. First, the
cost per-application appears to be well within the capa-
bilities of a modern host processor, for a reasonable spec-
trum of traffic rates. Second, the cost of protection (after
optimization), does not exceed by far the cost of an un-
protected system. Third, the costs presented are highly
application dependent and may therefore vary. Finally,
some effort was spent in increasing the efficiency of both
the original C code as well as the Cyclone version Thus,
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care must be taken not to overstate these results. This ex-
periment does indicate that it is feasible to provide pro-
tection mechanisms in an open monitoring architecture,
enabling support for experimental applications and un-
trusted users. However, the numbers should not be con-
sidered representative of off-the-shelf compilers and/or
carelessly designed applications.

3.5 Modeling supportable workloads and traf-
fic rates

We can roughly model the expected performance
(maximum supportable packet rate) of FLAME as a
function of workload (number of active modules). We
derive the model from our measured system performance
from Section 3.4, and the costs of our experimental ap-
plications and the measured safety overheads from Sec-
tion 3.4.

We can approximately fit the number of available cy-
cles to ����� ��� , where � is transmission rate in packets per
second and ��� and

� � are constants. Computing �	� and� � using least squares, and dropping the data point at
848k packets per second3, we get the number of avail-
able cycles for processing is 
��������������� ������� . Packets
per second, � , can itself be computed as ����� � where
� is the transmission rate in bits per second, and � is
the mean packet size in bytes. Assuming a mean mod-
ule computation cost of 210 cycles per module (based on
the assumption that our applications are representative),
and using our measured overhead of 60 cycles per mod-
ule, we can support a workload of ! �� �� "����#�$� ��������% mod-
ules for an incoming traffic rate of � packets per second,
without losing a single packet. Conversely, we can com-
pute the maximum traffic rate as a function of the num-
ber of available cycles, & , by � �('*) �+�,-�./� "�&0� � � "1�$���
(or ���2 ) 3+�45�6/�7��89� � � "1�$�:� , where 8 is the number of
modules).

To apply this model on an example, consider a fully-
utilized 1 Gbit/s link, with a median packet size of 250
bytes, which is currently typical for the Internet. In
this scenario, � , the input packet rate, is approximately
500,000 packets per second. The model predicts enough
capacity to run 5 modules. For comparison, note that we
measured the maximum loss-free transmission rate for
1310 cycles on a 1 Ghz Pentium to be 500,004 packets
per second; 1310 cycles comfortably exceeds the total
processing budget needed by the 4 applications in this
study (841 cycles with safety checks, and 731 cycles
without any safety checks). Alternatively, with 20 ac-
tive modules loaded, and an average packet size of 1K

3The fit is remarkably good for packet rates under 500,000 packets
per second. The fit is good for packet rates up to about 800,000 packets
per second, but our measurements when the gigabit network was run-
ning full bore sending 64 byte packets (small), yielded fewer available
cycles than predicted by our model.

bytes (full-size ethernet data packets, with an ack every
2 packets), the system can support a traffic rate over 1
Gbps.

The demonstrated processing budget may appear
somewhat constrained, assuming that users may require
a much richer set of monitoring applications to be exe-
cuted on the system. However, in evaluating the above
processing budget, three important facts need to be con-
sidered. First, faster processors than the 1 GHz Pentium
used for our measurements already exist, and processors
are likely to continue improving in speed. Second, a flex-
ible system like FLAME may not be required to cover all
monitoring needs: one can assume that some portion of
applications will be satisfied by static hardware imple-
mentation in routers, with an open architecture support-
ing only those functions that are not covered by the static
design. Third, the figures given above represent the rate
and workload at which no packets are lost. As the num-
ber of active applications increases, it will be worthwhile
to allow the system to degrade gracefully. The cost of
graceful degradation is an increase in the constant per-
module overhead due to the added complexity of the
scheduler — thus packet loss will occur under slightly
lighter load than in the current configuration, but an over-
loaded system will shed load gracefully.

A straightforward approach is to cycle through the ap-
plications in priority order, and monitor the average num-
ber of cycles between packets. A threshold slightly be-
low the mean cycle count can be used as an execution
limit to abort low priority modules if the system falls be-
hind. The packet buffer should provide adequate cush-
ioning to ensure that the highest priority modules never
miss any packets. In this manner, adding non-essential
applications (e.g., for research purposes) will not hurt
critical functionality (e.g., billing, or security), as in-
creasing traffic rates saturate the system, and may thus
be safely admitted for executing on the system. Although
our current implementation does not provide this feature,
it appears reasonably easy to implement.

Based on our results, we can assert that FLAME is
able to support a reasonable application workload on
fully loaded Gbit/s links. Using FLAME on higher net-
work speeds (e.g. 10 Gbit/s and more) does not currently
seem practical and is outside the scope of our work.

4 Summary and Concluding Remarks

We have spent some time building, measuring, and re-
fining an open architecture for network traffic monitor-
ing. Several interesting observations are worth reporting:

The techniques developed to build general infrastruc-
ture are applicable and portable to specific applica-
tions. LAME was built using off-the-shelf components.
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FLAME, in contrast, required us to write custom code.
However, it was constructed using “off-the-shelf technol-
ogy”. That is, the techniques we used for extensibility,
safety, and efficiency were well-known, and had already
been developed to solve the same problems in a general
active-networking infrastructure. In particular, the tech-
niques used for open architectures are now sufficiently
mature that applications can be built by importing tech-
nology, rather than by solving daunting new problems.

Nevertheless, careful design is still necessary. Al-
though the technology was readily available, our system
has gone through three architectural revisions, after dis-
covering that each version had some particular perfor-
mance problems. Care must be taken to port the right
techniques and structure, otherwise the price in perfor-
mance paid for extensibility and safety may render the
application impractical.

Programmable applications are clearly more flexible
than their static, closed, counterparts. However, to the
limited extent that we have been able to find exist-
ing custom applications supporting similar functional-
ity, we found that careful engineering can make applica-
tions with open architectures perform competitively with
custom-built, static implementations.

More experience building applications is certainly
needed to support our observations, but our experience
so far supports the fact that high performance open ar-
chitecture applications are practical.
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