Mail::Box — Final Report

Mark A.C.J. Overmeer*
MARKQV Solutions, Arnhem

7th February 2003

1 Introduction

Mail::Box is a module for the Perl programming language. It helps pro-
grammers to process e-mail message automatically. For instance, Mail: :Box
can be used to filter incoming unsolicited messages (spam and viruses),
create automatic replies to costumers, search through mail archives, or
produce web-based mail applications. Mail: :Box is not a user application
itself, only a library which facilitates application writers.

Mail::Box was created by me, Mark Overmeer, in 2001 as a modern re-
placement for existing e-mail handling libraries for Perl. It had already
grown to quite a large module, in need for a push to market.

The NLnet Foundation offered to support the development of Mail: : Box for
a few months, in which a set of improvements had to be made. These im-
provements targeted both the implementation and the building of a user’s
community. This short paper describes the improvements which were real-
ized.

2 Promotion

The main focus for this NLnet funded project was to enlarge and organise
the user community. A module which has more users will get better, and
therefore attract even more users, where a module which does not actively
promote itself will eventually diminish. Besides, the module required more
involved developers to safeguard continued improvements.

A number of promotional activities were launched:

e One presentation and paper at the SANE2002 Conference in Maastricht.

*e-mail: mark@overmeer.net, web-site: http://mark.overmeer.net



Mail::Box final report 2

e One tutorial and a paper on YAPC::Europe, the yearly European Perl
Conference, this time in Munich Germany.

¢ A web page which is used as central development location, listing all
Mail: :Box resources at http://perl.overmeer.net/mailbox/

e A mailing-listmailbox@overmeer.net, with (on feb 1st, 2003) 70 mem-
bers. The mailing list started at May 20, 2002. From then on, in eight
months, it processed about 1500 e-mail messages. This is 4 times
the number of messages | sent and received related to the module in
the eight months before the list started.

e Most of the mailing list messages are saved in the archive at
http://marc.theaimsgroup.com/?1l=perl-mailbox. Some discus-
sion threads were not broadcasted to everyone, to avoid list mem-
bers from being over-flooded with less interesting debates. These
messages can not be found in that archive.

Next to the standard mailing list, some regular contributors have their
own direct link to me, as main implementor. Messages on some
Mail: :Box related modules are kept separate as well. A simple mes-
sage count reveals about 300 messages more.

This total of 1800 messages in eight months consumed a consider-
able amount of the project time.

e Mail::Box had two items on the central Perl story board website, loc-
ated at http://use.perl.org.

Seen the enormous (and growing) amount of messages, it is clear that the
number of users is rising.

3 Quality improvements

One of the main targets for the project, was to improve the quality of the
library. Based on the algorithms of the existing (old) modules, Mail: :Box
had to be improved to fulfil the requirements of the latest RFCs.

3.1 Conformance

Code improvements have been made in many areas, for instance in the
strict protection of the order of header lines, the improved processing of
resent-groups, and the handling of messages which are not RFC compliant.
These improvements were mainly possible due to the growing amount of
users, giving feedback on what they found.



Mail::Box final report 3

3.2 Documentation

The larger alibrary gets, the harder it is for users to understand what is hap-
pening inside them. Mail: :Box defines over 800 methods in 110 classes,
which is not easy to grasp.

During this project, the organisation of the documentation is re-done.
The manual-pages are now partially generated, to help the user understand
class dependencies. Available methods are grouped, sorted, and now have
a consistent layout. To achieve this, the standard POD document feature of
Perl was extended from a visual style mark-up into a logical style mark-up
language. It would be nice to publish this extension to benefit the whole
Perl community, however the time to publish this feature is lacking.

Not only the structure of the manual-pages is improved: they are now
also available in HTML format, which certainly helps to browse through
them. The HTML pages contain exactly the same information as the pages
which are available through the man command. Generating documentation
especially for browsing would improve the accessibility of the information
even further.

3.3 Tests

Distributed with Mail: :Box are 75 test scripts which define over 7000 differ-
ent regression tests. During the time-span of this project, these tests have
been re-organised into groups to facilitate tests on optional extensions to
the library. Failure in some groups of tests will break the installation of the
module, where other tests are considered less important.

The output of the tests is improved as well: failing tests will report what
went wrong, in stead of just fail. This simplifies solving the rare installation
problems which some users experience.

3.4 Portability

A lot of effort has been made to resolve all problems with the tests when run
on Windows. The library is platform independent, but some of the tests are
not. Especially differences in representation of line-endings (LF character
for UNIX, CR/LF characters for Windows, CR for the old Mac) caused many
tests to break.

Nearly all these problems were solved. There are some differences
between versions of Windows, for example the level of POSIX compliancy,
which still cause failures; this still has space for improvements. Most port-
ability issues to Windows were solved with a sustained effort by Greg Math-
eson (an American guy working in Taiwan).



Mail::Box final report 4

4 Extensions

Many extensions to the module have been realized. Most of them were
planned, but some where initiated on user’s request.

| have tried to get people involved by including their code. This was
a much harder task than expected. even experienced programmers need
time to work through a library of this size. In a salaried job, you usually
can allocate some hours to learn, but when you have to do developments
in your own time, this is usually too much of a burden. During the whole
period of the project, people showed good intention to contribute, however
this rarely succeeded.

The most important feature which was planned to be implemented by someone
else was IMAP. IMAP is a very complex asynchronous protocol, which really
demands a lot from the implementor. Too much, as came clear during the
project. A few alternative IMAP implementations were discussed, and at-
tempts were made to challenge someone to code it. Preparations were
made to simplify embedding IMAP into Mail: :Box. But all efforts were in
vain: implementation of IMAP is a serious task, which is too much work for
voluntairy contributors.

Realized major extensions:

e Liz Mattijsen wrote a POP3 extension. This extension was made in
a way that it does not matter for a application programmer whether
the messages are located on a local disk with a file based message
format, or available via POP3. Even breaking connections will not
bother the user’s application.

Greg Matheson wrote a connection to Exim, an open source mailer.

Together with Edward Wildgoose, strict reporting of status codes in
raw SMTP protocol handling was implemented.

A connection was made to Spam Assassin, a well known spam filter.

As planned, a message parser written in C was published. One re-
ports speaks of a four-fold speed improvement when opening mes-
sage folders.

The number of extensions, fixes and improvements is too large to list here.
The change log reports 261 changes made during this project. These
changes where contributed or initiated by 42 different people. In most
cases, | had to write the patch.



Mail::Box final report )

5 Releases

The project has maintained a “release often” policy, to pass improvements
as fast as possible to all users. Mail: :Box is the name of the main module
which is covered by this project, but there are a few other modules involved.
These modules are distributed as separate packages because they have a
use outside message processing.

The full set of related modules, which are maintained by me:

Mail: :Box
By far the largest module, defining 90 classes to handle mail mes-
sages and mail folders. It has seen 24 releases during this NLnet
funded project.

Mail::Box: :Parser::C
The message parser which is written in C, is distributed as separ-
ate package: some people (especially on Windows) do not have a C
compiler available. The main package does not require a C compiler
at all, where this extension needs one.

MIME: :Types
Defines MIME types: standardised descriptions of data types. It has
seen 6 releases.

Object::Realize::Later
A tricky module which helps Mail: :Box to perform with a reasonable
speed. It got special attention during the YAPC::Europe conference,
and is slowly getting broader acceptance.

User::Identity
A new module, which tries to standardise the handling of general user
information, like name and address. This data can be retrieved from
various sources (LDAP, database), and used on many places (for in-
stance to construct e-mail messages). This module has just seen its
first alpha release.

Mail::Identity
In combination with a User: :Identity, it stores the various roles a
person can have when processing e-mail. For instance, you may have
role as company representative, private person, and web master. It
combines information like reply address, pgp-key, and signature for
each role. Not released yet.

MailTools
This set of modules are to be replaced, but are still maintained. This



Mail::Box final report 6

bundle of modules is marked deprecated: only bugs are fixed. MailTools
was hit by a security alarm, discovered by SuSE. It has seen 12 re-
leases during this NLnet project. The number of requests for supports
is decreasing.

6 Conclusions

The Mail: :Box module is more and more used, and the older e-mail related
modules have less and less users. The only disadvantage of this growth is
the increasing call for support. It consumes at least one hour a day to help
out and fix bugs or implemented small requested features.

The IMAP implementation did not succeed, which is a pity. On the other
hand, a POP3 implementation has been realized unexpectedly. A speed up
when using a C-based message parser is also achieved.

Mail: :Box has more users and a user community, better documenta-
tion, more conforming implementation, and more features. The project was
very successful. About ten statements of support by users are available as
well.

The wish-list of features waiting to be implemented is long. Plans for con-
tinued development as discussed in a separate paper.



