THE LCC: A LOCAL CONTENT CACHE

The LCC is a Local Content Cache system facilitating the fetching and storage of
network accessable content.

There are three parties involved. A “content provider” that provides the data
(typically a web server), the LCC tha t stores the data, and a “content user” can
then interrogate the LCC to retrieve cached content from the local system.

Typical users of this system can range from global internet search engines through
to central indexers of corporate intranets or universi ties.

The traditional approach to this problem involves spidering with link extraction.
This involves continual periodic polling of content to ensure the cache is kept up
to date.

Advantages found by using the LCC include:

Scalability
Webpages are only co llected when necessary. This provides much more
cost effective use of bandwidth and more efficient use of time,
allowing more to be indexed with given resources.

Changes are noticed immediately
Modified items are collected soon after naotification implying
date index . Modifications are visible in the index typically within a
day of changes instead of within weeks or months as with traditional
spidering systems. This is a very useful function for news sites which
can use automatic notification of ¢ hange.

Website structure is more easily detected
With traditional spidering and link extraction, a lot of work is
necessary to determine the structure of the website; to find framed
pages for example. With the LCC protocol it is possible to specify a
“bro wse URL" different from the URL used to retrieve the content
directly (the “fetch” URL). This mechanism provides flexibility for
the use of different future data types as well, reflecting differing
“views” of the same data.

Bandwidth and time of day contr ol
With the LCC protocol, it is possible to specify the maximum allowable
bandwidth used for fetching content from a site. This may be high for
a well connected site, or low for a site with less resources available
or dynamically served pages. Additional ly, it is possible to specify
in detail at what time periods the robot can come calling.

Free open source software
The software implementing the protocol and a high performance

collection system is both open source and free, protected by the GNU
GPL licens e.

WHERE CAN | GET IT?
The main project page can be found at:
http://www.nInet.nl/projects/lcc/

with LCC source available from sourceforge as the LoCoCa project:

an up to

http://sourceforge. net/projects/l ococa

It currently runs on Linux systens.

HOW DOES IT WORK?

In order to create a high perfornmance systemand aid scalability, the LCC has
several nodul es that appear as separate processes, as shown bel ow.

roboting machines

@ url files
X |

<7

machine id +
filename

The main processes have the follow ng functions:

CcpP

BM

A "Content Provider" process.
This is a process run by a registered provider on his own nachi ne that
subm ts changed-URL information to the LCC.

The "Update Notification Server" process.

This is the "front end" to the LCC. It accepts an XM. stream generated by a
CP indicating a set of changed-URL information which is then buffered into
local files.

It responds to the CP with an XM. streamindicating errors (if any) of
previous fetches for that provider, the current state of fetching for that
provi der and current quota information.

The buffered changed-URL infornmation is forwarded to the QM if and when the
QM is avail abl e.

The "Queue Manager" process.

This coordinates the fetching and storage of URL data. As such, it places
URLs to be fetched into a MySQ. table representing a queue and, after the URL
has been fetched, updates the main URL repository table.

The "Bot Manager" process.

This distributes fetching work to one or nore BOT processes or one or nore BM
processes. There is a single BM process on each nachi ne contai ni ng BOT
processes (managi ng filenanes for robotting on that nachi ne) and one BM

connected to the QM. On small systems where a single machine performs all
tasks, it suffices to have a single BM process that performs both functions.

BOT A mult i-threaded "Robot" process.
Each thread simply performs fetches into local files. There can be many BOT
processes; the number of threads per process is configurable.

CuU A "Content User", ie, some process that retrieves local fetched data.

RS A “Registrati on Server”, to be implemented later, that automates the user
registration process.

MySQL tables are used to hold data regarding registered provider information
(including the URL roots that can have URLs submitted and maximum fetch bandwidth
information), a queue of URLSs to be fetched (the QPSDB and QDB tables) and
information regarding URLs whose content has been fetched (the LCCDB).

SUBMITTING URLS TO THE SYSTEM: Icccp, Icccpstate

URLs are normally submitted to the UNS by the use of a CP, or Content Provi der
process. An example CP is provided, suitable for use on Unix systems. It consists

ofalow - level communicator process that communicates with the UNS and understands

the XML protocol; lcccp. <url> containers describing modified URLs are given to

this process and they are shipped up to the UNS.

For systems that want to remember state and submit only the URLs that have changed

since last time a submission took place, another process is provided that can be

used as a filter prior to lcccp; lcccpstate. < url> containers representing the
entire local site aregiven to lcccpstate, along with a state file, and Icccpstate

will forward only those urls that have been changed, added or deleted, updating the

statefile appropriately.

A simple script, file2url.sh, ¢ an convert a simple filename to an appropriate <url>
container. It can be invoked with ‘'find' parameters to locate files, or can be
given a sequence of filenames on stdin.

An appropriate http:// prefix can be automatically applied to each url using the
-- urlprefix parameter to lcccp.

Thus a simple file based system that wants to remember state can use the following
to provide content to the UNS:

file2url.sh -- find docroot - name "*.html' \
| Icccpstate -- statefile=state.txt \
| lccep -- uns=remotehost: 9000 \
-- pid=nnn -- pwd=xxx \

-- urlprefix=http://somesite/somedir/

In the XML stream sent to the UNS, aside from administration - related containers, is
a sequence of <url> containers indicating changed (to be fetched) URLs. Each <url>
container is an em pty container having the following textual attributes:

curl A “conceptual” URL. This is used as a “key” to disambiguate the
URL from other URLs submitted by the provider. It is normally
just the name of the URL itself.

mimetype The mimetype of the URL co ntent. The LCC can be configured to
accept only a limited set of mimetypes.

subt ype A “subtype” is sinply a text field of the form*“type: val ue”
that can be used in addition to the minetype to further
di sanbi guate the URL content type on cooperating systens.

burl A “browse” URL. The URL to use to visualise the content in a
browser. This mght include a surrounding frane, for exanple.
If omtted, the value of “curl” is used.

furl A “fetch” URL. The URL to use to fetch the content. |If
omtted, the value of “curl” is used.

nd5 An nd5 checksum of the URL content.

I en The Iength in bytes of the URL content.

ntinme The nodification tinme of the URL content.

The “curl” and “m nmetype” attributes are nmandatory, the others are optional

For the attributes “nd5”, “len” and “ntinme” supplied, a conparison is done with
val ues stored in the LCC db to deternine if change has actually taken place. A
m ssing value is taken to indicate change.

It should be noted that the XML stream sent to the UNS can indi cate whether the set
of <url> containers submtted represents the entire site (a “full set”) or just

i ncrenental changes (the nornmal case). The naxi mum nunber of unsolicited “ful

set” subm ssions allowed is configurable.

For those that want to comunicate using XM. directly to the UNS, a description of
t he protocol between the CP and UNS can be found in the HTM. docunentation of the
LCC

PROVIDER INFORMATION

Each URL submitted to an LCC cones froma particular 'provider'. The MySQ. tables
"pi db" (provider information database) and "proots" (provider roots) hold provider-
rel ated information.

The infornmation in a pidb row includes the followi ng that should be set to define a
new provi der

pi d A uni que provider identifier nunber.
passwor d A password that nust be submtted when the CP connects.

filesmax, spacenax
Quota limts for the provider

full setsall owed
The nunber of unsolicited “full sets” that can be subnitted by this
provi der.

bandwi dth A maxi num nunber of bytes per second for URL data fetches fromthis
provi der.

timeofday A bitnmask giving the allowable times for URL data fetches to occur from
this provider. Refer to the section FETCH NG bel ow for nore
i nformation.

priority A small number (0, 1 or 2) giving a priority for fetches from this
provider. Fetches are perfo rmed preferentially from a provider having
a higher numbered priority.

There are also some other fields that are updated to reflect current provider
statistics, namely:

fileused, spaceused
Resource actually used.

lastconnseq, lastconnip
An incrementing seq uence number, incremented with each connection and
passed back to the CP for informational purposes.
The lastconnip is the IP address of the last connection from that CP,
given back to the CP for informational purposes.

nurlerrs, nurlproc
The number of fet ch errors of URLs from this provider since the last CP
connection, and the number of URLS from this provider currently in the
LCC fetch queue.

The "proots" table gives the set of valid URL prefixes of valid URLs from this
provider. If a CP submits a URL n ot matching a valid prefix from this set, the URL
is not fetched and an error is normally returned.

There will eventually be an automated or semi - automated registration process to add
a new provider, but for now one must insert a new row in the pidb and on e or more
rows in the proots table to add a registered provider.

FETCHING

It is the QM process that actually coordinates URL fetching.

A queue of URL sets to be fetched is maintained in a MySQL table. Each set
represents a submission of one or (normally) more than one URL from a CP
connection. Each URL in the set is present in another MySQL table.

It is important to note several things about how fetching occurs:
- fetching URLs from a particular provider occurs in a serial fashion

- after each fetch occurs, a bandwidth calculation is performed to find out
if the next fetch from that provider can occur immediately or after a
certain delay.

- after each fetch occurs, a complete calculation of the bandwidth used by
the local system is performed to see if the next f etch from anywhere can
occur immediately or if all fetching should stop for a period of time.

- a "time of day" bitmask is used to limit fetching on a per - provider basis
to the times of day deemed desirable by that provider.

The "time of day" bitmask is dete rmined when the provider is registered.

A rolling time period is used by the LCC that is determined in the LCC

configuration file. It is normally either a day or a week with a granularity (also

configurable) of one hour. When a bit is set in a provider's time of day bitmask
it implies fetches from that provider can occur in that time period according to

the local timezone of the LCC. Any timezone mapping occurs during the registration

process.

The two nornmal configuration options are:

- A "tinme of day" nask of 24 bits, representing hours in a day where it is
I egal to fetch.

- A "tinme of day" nask of 168 bits, representing hours in a week where it is
l egal to fetch.

Al the above functions are perforned in the QW The BMallocates files to be used
as destinations of URL content, and each BOT thread sinply perforns a fetch into a
nom nated file.

EXTRACTING URL INFORMATION FROM THE SYSTEM

Currently this is all done manually.
The LCC db nust be interrogated directly, such as:

select furl, mnetype, fetched machineid, fetched fileid
fromlccurl
where fetched_ tine > xyz;

Then, dependi ng on your system the fetched machineid, fetched fileid pairs are
mapped to a real accessable filenane.

Sone sinple scripts are available to aid use with various indexers, nanely
NexTrieve, SWSHE and ht://Dig

RELIABILITY

The systemis set up so as to present a reliable interface to CPs. Any process that
is termnated for whatever reason and restarted will cause other processes to
automatically reconnect, for exanple.

For mai ntenance reasons, it mght be deenmed necessary to terninate the QM process
(stopping fetching and URL dat abase updates). 1In this case, CPs can still subnit
changed- URL sets to the UNS, which automatically buffers the information in | ow
overhead files until the QMis restarted.

BOT processes can be killed or started for whatever reason, and the BM (and QW are
automatically notified of increased or decreased fetching capacity. Any fetches
bei ng perfornmed by a BOT that has been killed are automatically reschedul ed.

If a hardware or software failure occurs that results in lost fetched URL data, the
data can sinply be fetched again. |If the hardware or software failure results in
lost information regarding the URLs thenselves, it is possible to notify one or
nore CPs (when they next connect) that they are requested to send a 'full set' of
their URL information to be fetched. This flag is not reset until the CP at sone

| ater date does, indeed, send a full set of URLs.

EFFICIENCY

Sone effort has been expended to nake the system have as few bottl enecks as
possible. It is possible (and intended, for |large systens) to have the QM and
BM BOT processes on different machines with |ocal MySQ tables.

A not insignificant advantage was seen by using MySQ. statenents of the form

insert into table values (a, b, c¢), (d, e, f),...

rather than using nultiple statenments, one per row.

The amount of caching that occurs of this formis not currently configurable. The
caching is done in such a way that if a process is killed containining un-executed
(cached) SQ. statenents nothing special need be done before the systemis
restarted. In worst case scenarios, the follow ng happens:

- Sonme URLs that have been fetched nay be fetched again.

- Sone local file information (representing URLs stored in local files, or
local files available for re-use) may be lost, resulting in unused files.

Both cases represent minor problens. A sinple verification script can be run
periodically if required to | ocate instances of the second case and to mark the
otherwi se lost files as available for re-use.

USING THE LCC FOR TRADITIONAL SPIDERING

Al though the LCCis primarily targeted at Content Providers that can "push" data,
it is still possible to use the LCCin traditional spidering applications.

In this case, "registered providers" are set up as before, indicating sites that
can be fetched from Instead of waiting for URL notifications to be pushed,
however, the LCC can be populated with initial fetches of sone top-level pages from
these sites. Thereafter, periodic scans can be done of the LCC database |ocating
any URLs that have been fetched after the previous scan. These URLs are accessed
fromthe local nmachine, link extraction is perforned, and the links are subnmitted
as if the provider was notifying the LCC of change. The Iink subm ssions can be
marked to be only fetched if the page does not already exist in the LCC and can

al so be marked to be silently dropped (rather than generating errors) if the URL to
be fetched falls outside the valid bounding tree of the provider

OUTSTANDING ISSUES
There are a nunber of points not yet resolved in current LCC system

- Only HTTP requests can be perfornmed at the nonent. There are sone hooks
internally at some points in the systemfor other protocols, but nothing
wor kabl e.

- Security needs to be | ooked at regarding the content provider connection
and provider password. Currently everything (including the password) is
transmitted and stored in the clear

- An investigation should be perforned to see if SQ transation support is
really necessary to guarantee systemintegrity, at |least as an option

