
Discovering security defects in
binary only software by

fingerprinting

Introduction
Regularly security defects are found in electronics such as routers or NAS storage devices. With a shift 
from all purpose desktop computers/laptops to specialized devices (consumer electronics, SCADA, 
industrial automation) and a massive growth of electronics it is expected that these devices will get 
closer attention by people who want to exploit bugs in these devices.

As soon as these devices are deployed it is hard to fix bugs in them, either because it is hard to get 
users to install firmware updates (because the users don't want to, or because it is hard to get them to 
notice there is a firmware update), or it is impossible, impractical or dangerous to interrupt services and
install an update (SCADA, industrial automation).

This document describes a method for proactively discovering if binary software is vulnerable by first 
detecting which files were used to build a binary and by then combining it with information about 
security bugs extracted from source code.

Tags
Linux, FreeBSD, *BSD, Unix, QNX, Solaris, Android, Java, software, software development, security, 
defect discovery, reverse engineering

Detailed description: using fingerprinting and combine it 
with security information

The method uses a combination of fingerprinting and security information obtained using static source 
code analysis. The first part of this method consists of analysing source code and finding out about 
security flaws in the source code. Common flaws are documented in for example the CERT secure 
coding standards. Source code can be analysed in a number of ways. One way is to use regular 
expressions to get the interesting bits of code, the other is to use a parser to build an abstract syntax tree
(AST) and walk the AST to search for possible vulnerable code and further process results. After 
identification of possible vulnerable code the file name, file hash (MD5, SHA1, SHA256 or another 
hash), package, version and bugs found are stored in a database, together with information about 
identifiers (string constants, variable names, function names, method names, and so on) found in the 
file.

The identifiers (string constants, variable names, function names, method names and so on) are used to 



find out what software is inside the binary file and which specific source code files could have been 
used. This has been described at the Mining Software Repositories 2011 conference in the paper 
“Finding Software License Violations Through Binary Code Clone Detection” [2] and has been 
implemented in various tools like for example the Binary Analysis Tool and documented in other 
publications[3][4]. The method described in this document takes the result of this process and 
combines it with security information.

After detecting which files could have been used the database is queried to find out if there are any 
known and possible security bugs in those files. If so, these are reported.

Steps
1. create a database of information about software source code files, including identifiers (string 

constants, function names, variable names, and so on), file hash, package name, version name

2. analyse source code files to search for known and possible security defects and store these with 
the information from step 1, or in a separate table per file hash

3. analyse a binary file to find out which files could have been used

4. query the database to find if there are any known or possible security defects in the files that 
could have been used

5. report results from step 4.



Diagram

References
[1] CERT secure coding standards - http://securecoding.cert.org/

[2] Finding software license violations through binary code clone detection. In Proceedings of the 8th 
Working Conference on Mining Software Repositories, MSR ’11, pages 63–72, New York, NY, USA, 
2011. ACM

[3] http://ip.com/IPCOM/000214472

[4] http://www.defensivepublications.org/publications/finding-software-license-violations-through-
binary-code-clone-detection

http://ip.com/IPCOM/000214472

	Introduction
	Tags

	Detailed description: using fingerprinting and combine it with security information
	Steps
	Diagram

	References

