@ basys Kom Seite 1/8

Project Proposal
Service Architecture for Multimedia Based Communication

Dipl.-Ing. Eva Brucherseifer
Dipl.-Ing. Stefan Eilers

02/01/06

Contents

1.TRE SHUBLION. ...ttt e et e s e e aes beesareeennnens 2

2 I 1= Y4 o o SRR 2

R = T (=T I (o] 1= T SRR 4
B B =1 =T 0= PRSP OTPRR 4
3.2.MOTUIM/DesktopIntegrationSIPIMcooi e eeeenaaes 4
TR 1 <0 || SR 4
K @ o1l o o I 0] (0] 17/ o= PSR TPRR 5

4.0penCDI Project: Description @nd BiasS..........ooee i e e 5
I (oY= o[4= o PR 6

L IR o= 1T PP 6

6.1NVOIVING the COMMUNILY.....coiiiiiiiii et e s e e e snaees aeeas 7
(STt I = 7= Tod (=T o (o SRR 7
oI €1 1Y o]][] (] i L3PPSR 7
6.3.Community Platform, SVN.......coo e aaaaaaaas 7
6.4.ComMMUNILY EVENTS. ... e s —eee e e e e e aaae s 8

ARS8 1101000 Y7 RSP 8

@ basyskom Seite 2/8

1. The Situation

Current computer systems provide a wide range of options for communication. Text based approaches
(like mail, web logs (today just called blogs) and text chat) are long established technologies, while the
communication is changing towards audio and video based solutions.
As sending mails and web logs is based on one standardized protocol in each case, a wide range of
stream based solutions using different protocols and codec’s, even if they are doing basically the same
(from the user point of view).
For instance: Providing an IP-based telephone connection may be realized by various protocols, like SIP,
H.323, Skype and more. While the protocols are different and don't allow to interact, even the encoding
and decoding of the content stream (audio or video) may use different technologies. Thus, two SIP
endpoints may be unable to communicate if they don't provide a common codec to handle the content
stream in a correct manner!
Due to this situation, users are forced to use several applications simultaneous to gain access to various
network protocols. Thus, power users face a situation which is nearly unbearable: While one mail client
and one web browser is sufficient for accessing all mails and blogs (or other html-based services), he will
need various chat clients (for instance a Jabber-, MSN-, AOL-Messenger and an IRC client), a minimum
of two VolP-Clients (Skype, SIP) to stay in contact with his friends and colleagues. And this tendency is
increasing permanently.

There already exist several solutions to reduce the problem illustrated here. One idea is to use a protocol

which is capable to integrate others via gateways, like the Jabber protocol does: Users just need one

Jabber client to stay connected to all friends which may reside on any other network. This solution has a

big drawback as most protocols uses peer-to-peer solutions to realize the channels for the content

stream. Due to this fact, the gateway has to work as a proxy for all connected users, which causes a

bottleneck and will lead to unacceptable latencies and the inablity to guarantee a minimum bandwith.

Thus, these gateways only support text based chats which requires low bandwidth and prove to be very

robust against package delays.

Other solutions integrate all protocols and codecs into one application by using a plugin infrastructure.

This avoids bottlenecks and allows to use the full feature set of the protocols integrated.

There do exist various applications (Gaim for instance) which integrate different protocols this way. But

they show several obstacles:

« To support a lot of protocol variations and features cause complex user interfaces which may not fit to
every use case very well. The applications tend to grow bigger and bigger while the user may need
just a minimum of the included features.

« Plugins are incompatible to foreign applications. This avoids synergetic effects.

- The available tools are limited to a special use case like instant messaging and don't provide a
generic integration of communication services to extend missing features. For instance, it is
impossible to add a video chat feature by adding a special plugin!

This leads to the vision, which is discussed in the next section.

2.The Vision

The vision of this project is to provide a generic infrastructure which integrates all communication
protocols like a plugin based solution would do, without to write an application which has to provide
everything in one user interface. The idea is to think in components and services, each optimized for a
special task (or role). As a component will realize the user interaction, the services will provide the
technology. A service-based architecture interconnects all of them to fulfill a given task.

For instance, a user wants to connect a distant person by selecting him within an address application.
Depending on the contact information he selected (like telephone numbers or mail or instant messenger
addresses), the address application is requesting a communication connection (see fig. 1), using
OpenCDI. “CDI” stands for “Communication Desktop Interface” and describes the interface to connect
lightweight components or complete applications to the service architecture.

A service manager takes the request and uses an internal index of available services and its
dependencies to handle it. For instance, if the user selects a telephone number, it may allocate a SIP-
Softphone and the right audio service (which provides one or more codecs to encode/decode the audio
content stream) to establish the connection. Different backends would provide the needed functionality.
Secondly, one or several user space components will be started to provide a visualization to show the

@ basyskom Seite 3/8

ongoing operations and to interact with the user. Thus, the user is able to interrupt the process as the
destination is currently unavailable.

I Lightweight '
Addressbook Component KCall

Open Communication | [Open Communication || Open Communication

Desktop Interface Desktop Interface Desktop Interface
‘ (OpenCDI) (OpenCDlI) , (OpenCDlI)
IPC (D-BUS) E—
Ressource Ressource Ressource
Services Services Services
Hardware-Driver Network-Interface Audio/Video Service-Manager
(Encode/Decode)
I
[Hardware |
J TCP/IP

[Network Service }

Figure 1: Final Architecture

The important aspect of this idea is to permit the user to decide which visualization components or
applications he likes and which may fit into his workflow, but to decouple the underlying protocols and
ressources by using an open architecture as a platform which integrates everything. The hope is to start
a process which consolidates available solutions and uses synergetic effects without forcing the user to
take one big application.

In this concept, all services and components are connected to an interprocess communication framework
like DBUS as it provides the ability to transmit the signalling and the service requests between user and
kernel space backends. This allows a maximum flexibility. The content stream will be transmitted via
socket based communication channels which are created between the components directly on demand
(peer-to-peer concept).

To summarize the motivation or aim of this project:

« Whether a user just needs a simple dial pad to telephone, whether he want to use a more comfortable
address component or a real telephone (connected via USB or network) to call a distant person,
should not minimize the capabilities and services he is able to use'! The service manager just needs
the right services and components to fulfill a request. Or it will reject the request if it is not solvable,
as a video call does not make sense if no video-camera service is available or no component is
available to show the video content.

- If a new service is added, its features will be available for every tool, immediately.

- Additionally, developers need simple but efficient interfaces to integrate their services or components
easily, otherwise the open-source community will not accept it.

- In the future, this service architecture should solve everything, which is related to communication.

To realize this challenging task, a first example implementation is needed to start the community
process. This implementation has to be as small as possible to show the idea. But it has to work
successfully to start an open discussion and to get people to work for this project. The focus will be the
integration of computer based telephony, as stated in the next section.

' Ok, he has to use something different than a numeric dial pad to enter a jabber address!

@ basyskom Seite 4/8

3.Related Projects

Various projects exist which are related to this project. The following section describes the Telepathy
project which provides a working proof of concept implementation to start with and a dedicated
community. Following sections introduce projects which provide useful key technologies.

3.1. Telepathy
Project Homepage: http://ipcf.freedesktop.org/wiki

The aim of this freedesktop project is to provide a D-BUS based framework that unifies all forms of real
time conversations. Thus, the ambition of this project is very close to the vision stated in this paper, but
they are focused on soft-phones and gnome. They provide a proof of concept implementation based on
python and a D-BUS specification that looks like a good base for further extensions.

1

Addressbook I Client App
Media Cannel
Client Library | Client Library

D-BUS =

VOIP-Engine

Mission Control

Connection Manager] [Connection Manager]
[Network-Interface]

[Hardware-Driver

1
Hardware] |
TCP/IP

[Network Service }

Figure 2: Telepathy

Telepathy is already supported by an active community and leaded by Robert McQueen who is very
interested in our assistance. The existing D-BUS specification will be used and extended to meet our
requirements. As we would provide a C++/KDE integration by designing a Qt based client library (called
OpenCDI) and a C/C++ backend interface (for connection managers), they would benefit from our effort.
Connection managers created by the OpenCDI project will be available to the community and therefore
usable within the Telepathy framework without further modifications.

3.2. MOTUIM/DesktopintegrationSIPIM
Project Homepage: https://wiki.ubuntu.com/MOTUIM/DesktoplntegrationSIPIM

This project is in an early state, thus it does not provide any sources or draft specifications. Its motivation
is similar to ours and it is closely connected to the Telepathy project. Their first milestone is to integrate
SIP/IM into the (K)Ubuntu Desktop.

3.3. KCall

Project Homepage: http://kcall.basyskom.org

KCall is a telephone GUI offering CTI functionality and is integrated in KDE's Kontact

@ basyskom Seite 5/8

(http://kontact.kde.org). The software accesses KDE's addressbook and thus groupware servers.
KCall comes together with a KDE applet containing a SIP softphone implementation (kphone).

KCall and the applet communicate by using DCOP (KDE's Desktop Communication Protocol). The API
for this is considered as functional and was the first testcase for further development. Currently KCall
doesn't use the OpenTAPI framework, because OpenTAPI is not ready for use yet. KCall is prepared for
that though.

KCall Applet
VolP Backend q PhgnceagUI
based on KPhone DCOP Phonebook
Cal History Call Lists
User Notification

KDE-PIM
KAddressbook

KCall was implemented by Mike Hauth during his internship at basysKom. The sourcecode can be found
in KDE's SVN in trunk/kdenonbeta/kcall.

3.4. OpenTAPI Prototype

Currently we have a working prototype of an OpenTAPI framework. This prototype was implemented by
Malte Bohme as a “summer of code” project which was initiated by Google. It will be the base for the
future development of OpenCDI.

It contains a SIP client at the moment, based on Malte's own implementation of the SIP specification. It
was driven towards a framework for softphones. Right now there is no GUI using the framework.

The sourcecode is available in KDE's SVN in branch/kdepim/kcall

4.0penCDI Project: Description and Bias

The aim of this initial project is to start with a platform independent telephony framework for the
implementation of computer telephony integration (CTI) and telephony applications. It provides a simple
method to access conventional PSTN hardware as well as IP telephony setups. The applications use
OpenCDI as a desktop service interface. Thus it represents the interface to a local communication
middleware.

The main infrastructure of OpenCDI will be implemented with libraries that are part of the upcoming LSB
3 standard and that are available on other platforms like Windows and Linux Embedded as well. This
includes libraries such as libstdc++, glib and Qt. We intend to create a framework that is compatible with
Telepathy as much as possible, so that we can share communities. We want use the existing IPC
specification as it is available on freedesktop.org and want to enable the use of already existing
Telepathy backends. Where necessary we will extend the existing framework and specifications and
discuss this with the Telepathy project.

The communication protocol used by the applications will be DBUS using the protocol specification
provided by the Telepathy project. The architecture of the framework will consist of a plugin structure
which can be extended easily. These plugins (called backends) provide resource services which are
handled by the service manager. One of them will provide an adapter which accesses PBX systems (CTI
3 party control). Others contain a softphone implementation (CTI 1% party control) or a remote control of
a hardphone (CTI 1% party control). Additional backends will provide services for audio subsystems,
audio codecs, video codecs, media protocols, etc. The backend interfaces will be discussed with the
Telepathy project, so that we can make sure Telepathy backends work with OpenCDI and vice versa.

@ basyskom Seite 6/8

The backends we would like to be available are the following. The crucial ones are marked with a star:

3" Party Control:

Asterisk Connector
Gigaset Connector using the gigaset kernel driver

Signalling for Softphone, Connection Manager:

SIP *
H.323

Audio Backends:

0SS, alsa, jack, etc
gstreamer? *
maybe multimedia framework of the different desktops

Audio Codecs:

G.711a*
GSM
speex

Video Codecs:

RTP:

theora

RTP *
SRTP

Instant Messaging connections:

Jabber
ICQ

Ul Applications using the framework:

KCall *
KPhone
GnomeMeeting
Kopete
KAddressbook

4.1. Roadmap

In order to implement the OpenCDI framework, we want to proceed with the following work packages:

Analysis of the Telepathy implementation in comparison to the existing OpenTAPI
implementation

analysis of other related solutions, such as the asterisk project

implementing the basis framework using C++, Qt and D-BUS

implementing user-space APIs

adapt and implement tests and example implementations such as KCall and backends

integrate existing backends and maybe further backends

test and debug

document the backend and application APIs

The major goal of this project is, to have a working infrastructure ready, usable by applications and with
the first backends available. The subset of functionality which will be available at least includes the
usage of softphone backends and 3™ party CTI control.

5.License

KCall, OpenTAPI and Telepathy are free software and are released under the LGPL. KPhone is released
under GPL as well as Kontact.

@ basyskom Seite 7/8

6.Involving the Community

First of all, we are going to coordinate our work tightly with the Telepathy project to stay compatible and
guarantee interoperability.

After implementing the service architecture and extending OpenTAPI towards OpenCDI the project can
be extended in two ways:
- One way is by providing telephony backends. This can be softphone implementations,
connectors to conventional telephony systems (e.g. PBXs) or VoIP systems.
« The second way is to use OpenCDI by other GUI applications and special applications.

6.1. Backends

The Telepathy project provides only few backends right now, consisting of a SIP backend and a video
framework.

We are in contact with the developers of KDE's messaging client Kopete as they are planning a rewrite of
their protocol backend structure. They are aware of the Telepathy project and might want to cooperate
here with regard to the backends, mainly for instand messaging and a Skype connector. They already
factored out the kimproxy daemon that provides presence information to applications in the same way we
want to provide telephony services with OpenCDI. Telepathy specifies a similar functionality.

Regarding new backends, we also plan to contact KPhone and GnomeMeeting as soon as we have the
framework ready in order to integrate the Kphone SIP implementation and a H.323 backend. KPhone is
right now being moved to sourceforge and a more open development style is being implemented. This
seems to be a good chance to cooperate with them.

Someone who wants to use KCall and OpenCDI to control his mobile phone has also contacted us.

6.2. GUI Applications

Most VolP implementations also support chatting (like SIP) and a later version of OpenCDI can provide
that functionality. Kopete is interested in making use of these VolP/Chat protocols. Right now they only
provide Skype through Skype's DBUS interface.

We are also interested in talking with gnomemeeting to share implementations. As gnomemeeting is
already planning to work with the Telepathy framework, we will benefit from first synergy effects.

Besides opensource software there is also commercial interest in OpenCDI. basysKom has been in
contact with ISVs looking for a TAPI replacement when porting their applications from Windows to Linux.
Usually this is about CRM or groupware applications. Specialized software for business processes might
also need CTI functionality.

Furthermore OpenCDI can be of interest for CallCenter applications. We hope to get companies involved
once the framework is ready.

Once the basic framework is released, we hope to be able to convince commercial users to further
support this project. By integrating Asterisk into this framework this architecture will hopefully generate
additional attention for commercial use cases.

6.3. Community Platform, SVN

In order to involve the community we want to provide a community platform including documentation,
mailinglists, access to the source code repository, etc. This should be synchronized with the needs of the
Telepathy developers, as a coherent presentation to the community is desired. We will consider moving
OpenTAPI out of KDE's SVN to a new location outside like freedesktop. This makes it possible for
people without KDE SVN account to contribute.

6.4. Community Events

In order to grow the OpenCDI & Telepathy community we want to take part in several community events
and also want to organize hackatons:

@ basyskom Seite 8/8

Fosdem, February
taking part in VolP track, meeting with Mark Spencer, invite Telepathy people, try to get in contact with
Gnome people, talk to KDE people (PIM, Multimedia)

KDE Multimedia Meeting in the Netherlands, May
maybe send someone there, to discuss the codec/audio/video backends

Hackaton in Darmstadt, June/July?
Once the first implementation is ready, we would like to invite other projects and mainly the telepathy
people to integrate and test first backends and to discuss possible framework extensions.

Conferences we can present at:

Linuxtag, May (Deadline passed already, maybe too early)
Guadec (GNOME conference), May? (maybe too early)
akademy (KDE conference), October?

7.Summary

OpenCDI will enable usage of CTI functionality on Linux and will be extended in further projects to a
service architecture for multimedia based communication. By integrating our results into the Telepathy
project, we are going to strengthen an already existing community process. Additionally, both projects will
benefit from synergy effects as the common D-BUS specification will permit interaction and
intercommunication between Gnome,KDE and its backend services.

We propose to Stichting NLnet to support the implementation and advertisement of the OpenCDI project.
See enclosed document concerning financial details and expected time frame.

Darmstadt, 03/27/2006

Eva Brucherseifer,
Stefan Eilers

