
Live Shared Linked Data

I'm George Svarovsky (george@m-ld.io). I've been working on a project called m-ld. It's a
software component for live information sharing, and it uses Linked Data as its data
representation.

I want to talk about sharing linked data to multiple collaborators at the same time.

Today I'll introduce m-ld to you, relate it to Linked Data, and talk about the big idea behind
it which has excited me all along; and the direction we're going next, with the help of NLnet
and the NGI.

Icons made by Vitaly Gorbachev from www.flaticon.com

Let's start back in the last century, with people using applications on their local machine.
They're manipulating information, locally. One edit follows another. Every now and then
they hit save and push the information to their local disk as a file.

But our user wants to share their information with other people. They could publish a web
page. Or they could send the file to someone else. But doing these things creates new
copies of the information, which creates a new problem. Every time anyone changes the
information, they have to somehow update everyone else.

So instead of making copies, we're going to put the information in one place, a database.
We typically have some middleware, maybe in the cloud, to make the data visible to all the
participants. Great! Problem solved.

Only, it isn't solved at all. This picture is an illusion. You can't look at data in a database.
What you still do is create copies of the information on your local machine to look at. And
getting it to your local machine means distributing it, via the middleware and the network.
Instead of a few copies, we have lots of copies.

Designing Data-Intensive Applications. Kleppmann 2016

Here's inside that cloud. We engineers spend a lot of effort moving copies of information
around. And they're all in different formats – we've got database rows, JSON,
object-oriented objects, text indexes, all kinds.

But what's the real heart of the problem here? I want to argue that the real problem is not
that we have lots of copies. We have to have those copies, because you can't see data that's
far away.

The problem is that each copy is static, and we have to work really hard to bring it to life,
which means updating it and sending out updates to it. The labels on the arrows in this
picture give some idea of the complexity involved.

And note that it's the application's responsibility to implement all of this. There are plenty
of great off the shelf components for databases and caches and text indexes, et cetera. But
making them all work together and present the data is down to you, the application
developer.

 a tale of two woes

Applications don't talk to each other well

- Linked Data provides base syntax and extensible semantics

Applications don't even talk to themselves well

- Shared Data provides base truth and extensible distribution

Let's relate this problem to Linked Data. Linked Data gives us extensible and
machine-readable meaning for information. That helps immensely with the data format
problem.

What I mean to say, is that Linked Data lifts the baseline of data representation. Instead of
binary, it's semantically-rich human- and machine-readable triples.

What if we could also bring the data to life? Instead of having static data as the basis of
truth, let's have live shared data as the basis of truth; and an extensible way to distribute
that data. Again, I want to change the baseline.

Let me illustrate what I mean. Here's the user again, with her local information, and again,
she wants to share it with another user.

The principle of m-ld is that the chunk of information is inherently live and shareable. So to
share it, she just shares it directly. And the other user can edit it too.

In this model, all that she needs, to do this, is a network connection. There's no server or
database holding a master copy of the information. Something (m-ld) is holding these two
copies in sync with each other.

Of course, there's interesting computer science and engineering going on behind the
scenes, but the important thing is that it really is behind the scenes. The app itself is built
on top of inherently live data, instead of inherently static data, and does none of the
synchronisation itself.

Now, one thing you might wonder is whether this is as resilient and secure as the cloud app
we had before. Well, in some cases it might be better, for example because we don't have
that cloud service any more, or a central database. So if Alice and Bob have a private
channel between them, then the information doesn't have to ever be visible anywhere but
on the devices that belong to them.

Resilience is harder to square – what if Alice and Bob both drop their laptops in the bath?

But remember, the data is live. There is nothing to stop the application developer from
putting it on the cloud as well, if that suits the application better.

 it('transacts parallel list inserts from two clones', async () => {
 clones = await Clone.start(2);

 await Promise.all([
 clones[0].transact({ '@id': 'shopping', '@list': ['Bread'] }),
 clones[1].updated('shopping')
]);
 await Promise.all([
 clones[0].transact({ '@id': 'shopping', '@list': { 1: 'Spam' } }),
 clones[1].transact({ '@id': 'shopping', '@list': { 1: 'Milk' } }),
 clones[0].updated('Milk')
]);

 const shoppings = await clones[0].transact({ '@describe': 'shopping' });
 // => e.g. [{ '@id': 'shopping', '@list': ['Bread', 'Milk', 'Spam'] }]

 expect(shoppings[0]['@list'][0]).toEqual('Bread');
 expect(new Set(shoppings[0]['@list'])).toEqual(new Set(['Bread', 'Milk', 'Spam']));
 });

Let me give you a hint of what m-ld looks like to use. This is a snippet from the compliance
test suite that checks an implementation of m-ld on a particular platform (like Alice and
Bob's laptops).

Most of the code on this slide is test fixtures, but you can see the API being used from the
test service to poke operations into two live copies of the data, called 'clones'. As it
happens, both of these clones are local, but of course in reality each clone would be inside
an app, separated by a network.

The first thing to note is that m-ld uses JSON-LD, which is a serialisation of RDF. So all
information in m-ld is Linked Data. You can also see that it's stretching JSON-LD to
encompass making changes to data (here, inserting items into a list at an index,
concurrently on two clones), and also querying data. These are extensions which I'd love to
talk more about one day!

m-ld is available now as a developer preview; there's documentation, and a demo, and a
playground, and a couple of starter projects.

Securing Shared Decentralised Live Information with m-ld

Who 'owns' shared information?

Who owns its schema?

Who owns its access control list?

https://github.com/m-ld/m-ld-security-spec

Who has modified it?

Who has attested its truth?

A moment ago I pretended that all there was to security, was privacy. Of course, it's not that
simple. So thanks to NLnet and NGI Assure, I'm now working on a project to look into
securing live shared information in a lot more detail.

In particular, if the new baseline for information is 100% shared and live, and anyone we
share it with can make edits to it (in principle), how do you make sure that only people with
best intentions do so? Clearly some level of authorisation controls are needed. But who sets
those controls, and how?

Obviously not all data is really created equal. Changes to schema information and access
control lists can have severe impacts on the information they relate to. Should these also be
live and shared by default? I argue yes, they should.

And of course, we also want to keep identified people and machines accountable for the
changes they do make. If data is always live, we need ways for people to sign their name to
information, or agree to it, but not necessarily have to sign their name to every future
version of it. I hope you agree that many of the answers will be in common with existing
ways of securing information, and will use tried and tested techniques like cryptography.

But as other speakers have said, we know it's too easy to rely on opaque data app providers
who may not actually share our values, who take control of our communication. I think that
partly this has arisen because of the sheer complexity of building apps that distribute
information. If instead, shared information is the baseline, and so the apps of the future are
that much easier to build, maybe the controls we place on information will be easier for us
to manage, not harder.

https://nlnet.nl https://www.ngi.eu

https://m-ld.org

