
Next Generation Internet

Best practices for localization and internationalization
This documentation offers best practices and guidance for localization and internationalization of software, multimedia
content, and websites. The guidance is aimed at Free and Open Source Software and Libre/Open Hardware projects
funded by the Next Generation Internet research and development initiative. This guide may also help readers generally
interested in localization and internationalization.

What is localization? What is Internationalization?
We live in a connected world. There is a proliferation of digital content, software, web apps, and mobile apps. The concepts
of localization and internationalization are becoming crucial in such a globalized world.

Localization is adapting computer software, video games, multimedia content, and websites for use in a new language. One
can think of localization as the translation of the text and other changes required to make it function properly in a specific
language or place. Localization is often referred to as l10n (as in: ‘L’, followed by ten more letters, and then ‘N’).

Internationalization is a set of engineering activities to make the software adaptable to other languages and cultures. Thus,
internationalization enables localization. Internationalization makes the product translatable, and also makes it aware of
language-specific and location-specific conventions that differ. Conventions differ in the formats for time, date, currency,
numbers, and more. One can think of internationalization as the work that will make localization into many languages
easy. Internationalization is often referred to as i18n (as in: ‘I’, followed by eighteen more letters, and then ‘N’).

This document provides a highly summarized overview of the main concepts and steps to take, and aims to provide
guidance for the process.

What do we need to do?

Step 1: Prepare the project
• Consult the internationalization documentation for the programming language, platform, and/or build system. Some

relevant best practices might be covered there, for example, default libraries for automated testing using
pseudolocalization.

• Make the necessary changes to enable a locale. Locales may need to be enabled implicitly, for example, from an
HTTP Accept-Lang header or from environment variables. Locales may need to be enabled as a result of user action.

• Replace all translatable text in the code with localization calls prior to display. For example, replace the text string
"Keyboard shortcuts" with a call to getMessage(locale, "Keyboard shortcuts") or if GNU Gettext is used,
then with a call to _("Keyboard shortcuts").

• Ensure all texts from libraries or third-party components that could be presented to the user are localized.

• Ensure the code works with incomplete translations, not only 100% complete ones. Many translation libraries handle
missing keys gracefully with automatic fall-back.

• Automated tests may need to be enhanced to accommodate translations.

If done properly, adding support for a language may become simply adding the translation file(s) for that language.

Step 2: Gather source text
• Ensure that all localizable material is together in one place. Depending on the platform, the source text to translate

might already be isolated in certain source text templates, resource bundles, or message catalogs. An ICU/CLDR
system will likely expect text key-value trees, whereas Gettext will use a .pot file extracted with xgettext.

• Review the text for quality, such as spelling, consistency, etc.

• If translations are managed in a dedicated system, upload this new version.

• Consider announcing a period before a release with no text changes so that translators have enough time. This is
sometimes called a “string freeze” period.

Step 3: Update existing translations
If there are existing translations from a previous version, they need to be updated to the new source material. Many
systems have tools to assist in this process. For i18next projects, i18next-scanner and i18next-locales-sync. For
Mozilla Fluent projects, fluent-merge and compare-locales. For Gettext projects, msgmerge. This step might be
performed automatically by a build system or online translation management tool.

https://www.ngi.eu/
https://en.wikipedia.org/wiki/Pseudolocalization
https://www.gnu.org/software/gettext/


Step 4: Open the process to localizers
• Provide instructions for the localizers. Be clear about what is expected from them, including deadlines.

• Developers or localizers might prioritize certain files or sections over others.

• Try not to limit what tools localizers can use. Localizers might have a set of tools that they prefer to use. There are
standalone tools and web-based tools for translation.

• Document how localizers can test localized versions. It is highly beneficial if localizers can easily test their
translations themselves.

• Localizers translate, review, and resubmit the work.

Step 5: Test and integrate translations
• Translations should be committed to the version control system, and integrated with the build system.

• Ensure that the software builds and works with each translation.

Step 6: User testing
• Reach out to existing users for each language. Real users are often ideal testers.

• If required, provide special builds suitable for testing new translations.

• Keep in mind that a localized version could expose bugs in the code.

When updating the software, collaborators might go back to the translation step 3, or the whole process could be repeated
as part of the normal software development life-cycle for each version.

General Best Practices
• Get started with localization process during the early stage of development.

• Make internationalization part of the project’s coding guidelines.

• Include checking for internationalization issues as part of the code review process.

• Use Unicode for text encoding.

• Support multilingual user input, do not assume English.

• Ensure that sorted items presented to the user are ordered as expected. For example, ä sorts after z in Unicode
default sorting, but in the German alphabet ä sorts immediately after a.

• Allow for punctuation differences. For example, in Spanish a sentence may have punctuation at both the beginning
and the end.

• Design the system to support dialects. For example, in French the comma is used as the decimal separator in France
and the dot is used as the decimal separator in Switzerland.

• Allow for differences in capitalization. For example, German and English have different capitalization rules for
adjectives and nouns.

• Prefer presenting dates as unambiguously as possible for the date formats in the locale. For example, Javascript’s
Intl.DateTimeFormat with dateStyle:"medium" uses four-digit years and short text for the month.

• Use the localization library when concatenating numbers with text for correct pluralization. For example, the Polish
language has more pluralization categories than English.

• Be especially careful if the code manipulates text.

• Where possible, correctly annotate the language. For example, with the lang="xx" attribute in HTML/XML.

• Consider common localization practices in the outside world. For example, Wikipedia is highly multilingual.

• Leave ample space in the user interface elements to allow text expansion. A sentence may have different lengths in
each language to which it is translated.

• Keep right-to-left (RTL) languages in mind. Your platform (Qt, GTK, Web, etc.) should have best practices to
support such languages.

• Be aware of cultural differences. Icons, images, and even color can represent different meanings in different cultures.

• Avoid text in images. Plain text is much easier to manage and localize than images with embedded text.

http://wikipedia.org


Further Information
• Wikipedia on language localization: wikipedia.org/wiki/Language_localisation

• Wikipedia on internationalization: wikipedia.org/wiki/Internationalization_and_localization

• W3C on ECMAScript internationalization: Guide to the ECMAScript Internationalization API

• Mozilla JavaScript reference for built-in internationalization: Intl

• Unicode Common Locale Data Repository: Unicode CLDR

• International Components for Unicode: ICU-TC

• GNU Gettext (internationalization and localization system) manual: gnu.org/software/gettext/manual/

• Coloring and cultural symbolism: translation-blog.multilizer.com/color-localization-infographics

Acknowledgements
This Guide was primarily created by Translate House, experts in community localization. Translate House has created
multiple software solutions for localization. You can check them out here: toolkit.translatehouse.org.

Additional contributions were provided by Commons Caretakers.

The creation of this guide was made possible with financial support from the European Union’s Next Generation Internet
program, under the aegis of DG Communications Networks, Content and Technology.

http://wikipedia.org/wiki/Language_localisation
http://wikipedia.org/wiki/Internationalization_and_localization
https://w3c.github.io/i18n-drafts/articles/intl/index.en.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://cldr.unicode.org/
https://icu.unicode.org/
http://gnu.org/software/gettext/manual/
http://translation-blog.multilizer.com/color-localization-infographics
http://translatehouse.org/
https://toolkit.translatehouse.org/
https://www.commonscaretakers.com/
https://ec.europa.eu/
https://ngi.eu/
https://ec.europa.eu/info/departments/communications-networks-content-and-technology_en

