
Name: NGI Emergency Tech Review Facility High-level assessment ProteGO

Contract nr: LC-01499045

Date of signature: 15-01-2021

Name of the deliverable – Deliverable 3.3 – High-level assessment ProteGO

Authors: Abhinav Mishra, Marcus Bointon (Radically Open Security)

Level of distribution: Confidential, only for members of the facility (including the Commission
Services)

Confidential: Yes

https://reviewfacility.eu/

Penetration Test Report

Extraordinary Commissioner for
the COVID-19 Emergency

V 1.0
Diemen, September 30th, 2020
Confidential

Document Properties

Client Extraordinary Commissioner for the COVID-19 Emergency

Title Penetration Test Report

Target ProteGO Safe Android and iOS apps (version 4.2.4)

Version 1.0

Pentester Abhinav Mishra

Authors Abhinav Mishra, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 September 24th, 2020 Abhinav Mishra Initial draft

0.2 September 28th, 2020 Marcus Bointon Review

1.0 September 30th, 2020 Marcus Bointon Final version

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4
1.2 Scope of work 4
1.3 Project objectives 4
1.4 Timeline 4
1.5 Results In A Nutshell 4
1.6 Summary of Findings 5
1.6.1 Findings by Threat Level 5
1.6.2 Findings by Type 6
1.7 Summary of Recommendations 6

2 Methodology 7
2.1 Planning 7
2.2 Risk Classification 7

3 Reconnaissance and Fingerprinting 9
3.1 Automated Scans 9

4 Findings 10
4.1 PRO-001 — JWT Generated by the OTP Is Valid for Multiple Uploads 10
4.2 PRO-004 — (Android) Missing Root Detection 13
4.3 PRO-005 — (Android) Insecure Storage of Tokens 15
4.4 PRO-006 — (Android) Web View Has Javascript Enabled 16
4.5 PRO-007 — (iOS) NSURLRequests Are Being Cached 18
4.6 PRO-008 — Weak TLS Cipher Suites Allowed 19

5 Non-Findings 21
5.1 NF-002 — Test Cases 21

6 Future Work 22

7 Conclusion 23

Appendix 1 Testing team 24

1 Executive Summary

1.1 Introduction

Between August 17, 2020 and September 21, 2020, Radically Open Security B.V. carried out a penetration test for
Extraordinary Commissioner for the COVID-19 Emergency.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• ProteGO Safe Android and iOS apps (version 4.2.4)

1.3 Project objectives

ROS performed a penetration test with the developers of the ProteGO Safe application(s). The test was intended to gain
insight into the security of the apps. To do so, ROS accessed ProteGO Safe together with the developers, attempting to
find vulnerabilities and gain further access and elevated privileges by exploiting any vulnerabilities found.

1.4 Timeline

The Security Audit took place between August 17, 2020 and September 21, 2020. The report was completed on
September 30th.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 1 Elevated issue and 5 Low-severity issue.

The elevated-severity issue is related to the JWT which is generated in response to supplying a valid OTP. This JWT
can be used to send multiple requests with random/malicious TEK data, which might be abused to flood the service with
malicious/fake data.

The low-severity findings are the lack of checks for jailbroken/rooted devices (which allow the app run without
modification in a potentially hostile or compromised environment), insecure local storage, insecure webview
implementation and NSUrl caching.

4 Radically Open Security B.V.

Confidential

By exploiting these issues an attacker might be able to tamper with TEK uploads, and might modify the general
behaviour of the application, undermining its trustworthiness.

1.6 Summary of Findings

ID Type Description Threat level

PRO-001 Authentication The JWT which is generated by the OTP is considered
valid for multiple upload requests until it expires.

Elevated

PRO-004 Missing security control The Android apps can be installed and run on a rooted
device.

Low

PRO-005 Insecure local storage The Android app stores authentication tokens in the app's
storage area in an unencrypted format.

Low

PRO-006 Misconfiguration The Android application implements a web view with
Javascript enabled.

Low

PRO-007 Misconfiguration In the iOS app, the NSURLRequests are cached in the
Cache.db file.

Low

PRO-008 Transport layer security Some back-end endpoints allow clients to choose weak
cipher suites.

Low

1.6.1 Findings by Threat Level

83.3%

16.7%

Elevated (1)

Low (5)

Executive Summary 5

1.6.2 Findings by Type

16.7%

16.7%

16.7% 16.7%

33.3%

Misconfiguration (2)

Authentication (1)

Missing security control (1)

Insecure local storage (1)

Transport layer security (1)

1.7 Summary of Recommendations

ID Type Recommendation

PRO-001 Authentication • Invalidate the JWT immediately a valid upload has been submitted;
reject any re-use of the token.

PRO-004 Missing security control • Implement a root detection mechanism on Android app, and warn the
user appropriately.

PRO-005 Insecure local storage • Consider encrypting the sensitive tokens/files or store them in the
Android keystore.

PRO-006 Misconfiguration • Enable Javascript in web views only if strictly necessary.

PRO-007 Misconfiguration • Disable HTTP caching.

PRO-008 Transport layer security • Require a minimum of TLSv1.2
• Disable suites using RSA key exchange
• Disable CBC-mode cipher suites
• Test these changes on minimum supported iOS and Android OS

versions

6 Radically Open Security B.V.

Confidential

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance
We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:
active and passive. A passive attack is always the best starting point as this would normally defeat intrusion
detection systems and other forms of protection, etc., afforded to the network. This usually involves trying to
discover publicly available information by utilizing a web browser, visiting newsgroups, etc. An active form would
be more intrusive and may show up in audit logs and may take the form of a social engineering type of attack.

2. Enumeration
We use various fingerprinting tools to determine what hosts are visible on the target network and, more
importantly, try to ascertain what services and operating systems they are running. Visible services are researched
further to tailor subsequent tests to match.

3. Scanning
Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results
are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance
privileges to target hosts.

4. Obtaining Access
We use the results of the scans to assist in attempting to obtain access to target systems and services, or to
escalate privileges where access has been obtained (either legitimately though provided credentials, or via
vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate
limits) or by more aggressive brute-force methods. This step also consist of manually testing the application
against the latest (2017) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual
testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution
Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme
Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational
losses occurring as a result.

Methodology 7

• High
High risk of security controls being compromised with the potential for significant financial/reputational losses
occurring as a result.

• Elevated
Elevated risk of security controls being compromised with the potential for material financial/reputational losses
occurring as a result.

• Moderate
Moderate risk of security controls being compromised with the potential for limited financial/reputational losses
occurring as a result.

• Low
Low risk of security controls being compromised with measurable negative impacts as a result.

8 Radically Open Security B.V.

Confidential

3 Reconnaissance and Fingerprinting

Through automated scans we were able to gain the following information about the software and infrastructure. Detailed
scan output can be found in the sections below.

3.1 Automated Scans

As part of our active reconnaissance we used the following automated scans:

• nmap – http://nmap.org
• Burp Suite Pro – https://portswigger.net/burp/pro
• MobSF – https://github.com/MobSF/Mobile-Security-Framework-MobSF
• Testssl – https://testssl.sh/

Reconnaissance and Fingerprinting 9

4 Findings

We have identified the following issues:

4.1 PRO-001 — JWT Generated by the OTP Is Valid for Multiple Uploads

Vulnerability ID: PRO-001

Vulnerability type: Authentication

Threat level: Elevated

Description:

The JWT which is generated by the OTP is considered valid for multiple upload requests until it expires.

Technical description:

When the user supplies a valid OTP to the endpoint https://gat-stage.safesafe.app/getAccessToken, the
response contains a JWT. This JWT is then used in the next request to authenticate the TEK upload.

JWT Generation

JWT Generation time: 19:18; Expiration time: 19:48

The expiration time of this JWT can be discovered by decoding the key as a Base64 string, and then converting the
epoch expiration time; It was found to be 30 minutes.

During this period of 30 minutes, the same JWT can be used multiple times to upload the data. After the 30 min time, the
server will respond with unauthenticated message.

10 Radically Open Security B.V.

Confidential

Uploading TEK as intended (Request time: 19:25)

Using the same JWT to upload different data within 30 min is accepted (Request time: 19:27)

Sending an upload request with an expired JWT is rejected correctly (Request time: 19:50)

Findings 11

50 upload requests using same JWT:

Impact:

As the upload feature of the app needs to be authenticated with a valid OTP, it is important to ensure that one OTP
allows only a single upload. If the JWT can be used multiple times, it is possible to upload malicious/tampered/fake data
multiple times, even when the attacker has one valid OTP.

12 Radically Open Security B.V.

Confidential

Recommendation:

• Invalidate the JWT immediately a valid upload has been submitted; reject any re-use of the token.

4.2 PRO-004 — (Android) Missing Root Detection

Vulnerability ID: PRO-004

Vulnerability type: Missing security control

Threat level: Low

Description:

The Android apps can be installed and run on a rooted device.

Technical description:

There are no security controls to check whether the device has been rooted or not.

A rooting process compromises the security of the android device. The integrity of the operating system’s controls
over data that an application can access, is also lost. On a compromised device, a user/malicious app can disable key
security features and may compromise the integrity of the data of all the applications. The Protego app (version 4.2.4,
Stage) does not implement a check to verify whether the device on which it is running is rooted.

Findings 13

Impact:

When an application runs on a compromised device, the operating system and application's security controls, such as
sandboxes, keystore access etc, might fail to prevent user data from being accessed by other malicious apps on the
device. An application running on a compromised device also has a higher risk of exposure to malware, memory dumps,
tampering, and other types of malicious activity that could possibly expose a user's credentials or other sensitive data.

Recommendation:

Implement a root detection mechanism on Android app.

Note: It is not necessary to prevent the application from running on a compromised device, but users should be informed
of the higher risk under which they are operating.

When attempting to detect if the application is running on a rooted device, checks such as the following could be used:

• Check for the presence of certain paths, for example:

• /sbin/su

• /etc/apt

• /system/bin/su

• /system/app/Superuser.apk

14 Radically Open Security B.V.

Confidential

• Test for write access in the /private directory.
• Check for root access on an Android device
• Check for the presence of an su binary inside Android

Root detection is a security control which helps applications defend against being run on compromised devices. Though,
like most other security controls, this can be bypassed on the attacker's device using several techniques.

4.3 PRO-005 — (Android) Insecure Storage of Tokens

Vulnerability ID: PRO-005

Vulnerability type: Insecure local storage

Threat level: Low

Description:

The Android app stores authentication tokens in the app's storage area in an unencrypted format.

Technical description:

Android app stores the file PersistedInstallation.W0RFR...[redacted], which includes the AuthToken, in
the app's storage in an unencrypted format.

The following files contain a sensitive AuthToken in clear text format inside the app's storage in /data/data/
pl.gov.mc.protegosafe.stage/files/

PersistedInstallation.W0RFR...[redacted].json

Findings 15

Impact:

It might be possible to use the token to access some of the Firebase services. In case of physical access to the device,
or malware on the device, these tokens can be stolen and used maliciously to gain access to data/services.

Recommendation:

• Consider encrypting the sensitive tokens/files or store them in the Android keystore.

4.4 PRO-006 — (Android) Web View Has Javascript Enabled

Vulnerability ID: PRO-006

Vulnerability type: Misconfiguration

Threat level: Low

Description:

The Android application implements a web view with Javascript enabled.

Technical description:

The Android application implements a web view that has javaScriptEnabled = true set. This allows the WebView
to interpret JavaScript. JavaScript is disabled by default for WebViews and must be explicitly enabled. It should only be
enabled only when strictly necessary, so as to reduce the attack surface of the app.

The web view also suppresses warnings with @SuppressLint("SetJavaScriptEnabled").

Source code snippet:

File: app/src/main/java/pl/gov/mc/protegosafe/ui/home/HomeFragment.kt

@SuppressLint("SetJavaScriptEnabled")

private fun startPwaMigration(url: String) {
 binding.migrationLayout.isVisible = true
 binding.webView.apply {

 settings.javaScriptEnabled = true
 settings.domStorageEnabled = true

 webViewClient = object : WebViewClient() {
 override fun onPageFinished(view: WebView?, url: String?) {
 binding.webView.evaluateJavascript(DUMP_PWA_SCRIPT) { dump ->

 pwaDump = dump
 setUpWebView()
 }

 }

16 Radically Open Security B.V.

Confidential

 }
 loadUrl(url)

 }
}

@SuppressLint("SetJavaScriptEnabled")
private fun setUpWebView() {

 binding.webView.apply {
 settings.javaScriptEnabled = true
 settings.domStorageEnabled = true

 webViewClient = ProteGoWebViewClient()
 addJavascriptInterface(
 NativeBridgeInterface(

 vm::setBridgeData,
 vm::getBridgeData
), NativeBridgeInterface.NATIVE_BRIDGE_NAME

)
 loadUrl(urlProvider.getWebUrl())

 if (BuildConfig.DEBUG) {
 webChromeClient = object : WebChromeClient() {
 override fun onConsoleMessage(consoleMessage: ConsoleMessage): Boolean {

 webViewTimber().d("webView console ${consoleMessage.message()}")
 return true

 }
 }
 }

 }

Impact:

Allowing Javascript to be run in a web view opens possible avenues for attacks, such as XSS.

Recommendation:

As per OWASP, if JavaScript is necessary, the app should make sure:

• The communication to the endpoints consistently relies on HTTPS (or other protocols that allow encryption) to
protect HTML and JavaScript from tampering during transmission.

• JavaScript and HTML are loaded locally, from within the app data directory or from trusted web servers only.
• The user cannot define which sources to load by means of loading different resources based on a user provided

input.
• To remove all JavaScript source code and locally stored data, clear the WebView's cache with clearCache when

the app closes.

Findings 17

4.5 PRO-007 — (iOS) NSURLRequests Are Being Cached

Vulnerability ID: PRO-007

Vulnerability type: Misconfiguration

Threat level: Low

Description:

In the iOS app, the NSURLRequests are cached in the Cache.db file.

Technical description:

By default, iOS’s NSURLRequest will cache responses in the Cache.db file, which is stored in /Library/Caches/
pl.gov.mc.protegosafe/Cache.db.

Impact:

Storing sensitive data in unencrypted format in an SQLite database is not a secure practice. Such data might be leaked
to an attacker/malicious app if the app is running on a compromised device (see PRO-004 (page 13)).

18 Radically Open Security B.V.

Confidential

Recommendation:

Set the cachePolicy property of the NSURLRequest to disable the caching of HTTP(S) requests and responses. For
example:

(NSCachedURLResponse)connection:(NSURLConnection)connection willCacheResponse:

(NSCachedURLResponse *)cachedResponse { return nil;

For other methods of disabling the caching of HTTP(S) requests and responses, please refer to the Apple Developer
article "Understanding Cache Access": https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/
URLLoadingSystem/Concepts/CachePolicies.html

4.6 PRO-008 — Weak TLS Cipher Suites Allowed

Vulnerability ID: PRO-008

Vulnerability type: Transport layer security

Threat level: Low

Description:

Some back-end endpoints allow clients to choose weak cipher suites.

Technical description:

The following weak TLS cipher suites are allowed on https://gat-stage.safesafe.app and https://udk-
stage.safesafe.app back-end services:

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (0xc023)
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 (0xc024)

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013)
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xc027)
TLS_RSA_WITH_AES_128_GCM_SHA256 (0x9c)

TLS_RSA_WITH_AES_128_GCM_SHA256 (0x9c)
TLS_RSA_WITH_AES_128_CBC_SHA256 (0x3c)
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014)

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028)
TLS_RSA_WITH_AES_256_GCM_SHA384 (0x9d)
TLS_RSA_WITH_AES_256_CBC_SHA (0x35)

TLS_RSA_WITH_AES_256_CBC_SHA256 (0x3d)
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (0xc009)

Findings 19

Impact:

The TLS_RSA suites are considered to be weak because of the ROBOT attack; TLS 1.2 contains specific mitigations
to prevent such attacks. The CBC mode ciphers are vulnerable to plain-text attacks in TLS 1.0 and lower. A fix is
implemented with TLS 1.2 with GCM mode which is not vulnerable to the BEAST attack.

Recommendation:

• Require a minimum of TLSv1.2 to eliminate issues in older TLS versions.
• Disable all CBC-mode cipher suites; prefer GCM-mode suites instead.
• Disable suites using RSA key exchange to mitigate the ROBOT attack, and ensure your server's private key is

unique (i.e. do not use the same private key across multiple back-end servers).

None of these recommendations should present any issues for iOS, since these TLS settings are compatible
with Apple's ATS requirements introduced in iOS 9.0 in 2015. GAEN requires iOS 13.5 (Apple docs https://
developer.apple.com/documentation/exposurenotification), which is much more recent and has better TLS support.
Android's inherently slow uptake of operating system updates means that far more outdated devices are found in
the wild, so whether you are able to make all these changes depends on exactly which version of Android you want
to support as a minimum. GAEN suggests a low limit of Android 6.0 using API level 23 (see Google's docs: https://
support.google.com/googleplay/answer/9888358?hl=en and https://developers.google.com/android/exposure-
notifications/exposure-notifications-api), with a possibility of supporting some 5.0 devices with API level 21. Android
6.0 still has usable cipher suites available when these weak ones are disabled, according to Qualys SSL Labs (https://
www.ssllabs.com/ssltest/viewClient.html?name=Android&version=6.0&key=129), however, this will require testing with
minimum OS versions to be certain of what will work.

20 Radically Open Security B.V.

Confidential

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-002 — Test Cases

The following test case have been performed on the Android & iOS apps:

• Tests to find sensitive information hardcoded in the application's source code
• Tests to find insecure webview implementation
• Tests against sensitive information leakage through device logs
• Tests against OTP brute force on the endpoint https://gat-stage.safesafe.app/getAccessToken
• Tests against the JSON Web Tokens, generated through the endpoint https://gat-stage.safesafe.app/

getAccessToken 1. Sensitive data inside JWT payload 2. Brute forcing for JWT secret key (Wordlist brute force,
Hashcat) 3. Signature validation check 4. Tests for alg:none implementation

• Tests against use of insecure libraries
• Tests for insecure local storage of data
• Tests for insecure transport layer security
• Tests for insecure application components eg; exported activities/broadcasts.
• Tests for unused/extraneous permissions
• Tests against unintentional data leakage
• Tests to check if keyboard cache is disabled on text inputs that process sensitive data
• Tests for sensitive data exposure via IPC mechanisms
• Tests to check insecure deeplink/URL schemes
• Tests to check if the app uses symmetric cryptography with hardcoded keys
• Tests to check if the app uses cryptographic protocols or algorithms that are widely considered depreciated for

security purposes
• Test to check if the app's release built has appropriate settings for a release build (e.g. non-debuggable)
• Test to check if the app removes sensitive data from views when backgrounded
• Tests to check if the app does not hold sensitive data in memory longer than necessary, and memory is cleared

explicitly after use
• Tests to check if any exceptions are listed in the ATS (iOS app)

Non-Findings 21

6 Future Work

• Implement Additional Security Controls
Beyond addressing the findings detailed in this report, we also recommend implementing two more security
controls: dummy TEK upload sequences, and dummy analytics uploads. The Italian Immuni app (https://
github.com/immuni-app) implements these features which make it difficult for an attacker to guess or find out
whether a person is COVID-19-positive. See how the Immuni app implements them: https://github.com/immuni-
app/immuni-documentation/blob/master/Traffic%20Analysis%20Mitigation.md.

• Retest of findings
When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be
performed to confirm that they are effective and have not introduced other security problems.

• Regular security assessments
Security is an ongoing process and not a product, so we advise undertaking regular security assessments and
penetration tests, ideally prior to every major release or every quarter.

22 Radically Open Security B.V.

Confidential

7 Conclusion

We discovered 1 Elevated-severity issue and 5 Low-severity issues during this penetration test.

The impact of the elevated-severity issue considered high as it could lead to flooding of the service with malicious data
(TEK uploads).

The low-severity issues are related to insecure local storage, insecure webview settings, and missing security controls.
Taken together, these low-severity issues can adversely affect the application's integrity and trustworthiness, which may
undermine public trust. We strongly recommend implementing the suggested security controls and fixing all the security
vulnerabilities we found.

We want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security posture
must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order to
maintain control of your information security. We hope that this pentest report (and the detailed explanations of our
findings) will contribute meaningfully towards that end.

Radically Open Security is the world's first not-for-profit computer security consultancy. We operate under an innovative
new business model whereby we use a Dutch fiscal entity, called a “Fiscaal Fondswervende Instelling” (Fiscal Fund
raising Institution), as a commercial front-end to send 90% of our profits, tax-free, to a not-for-profit foundation, Stichting
NLnet. The NLnet Foundation has supported open-source, digital rights, and Internet research for almost 20 years.

In contrast to other organizations, our profits do not benefit shareholders, investors, or founders. Our profits benefit
society. As an organization without a profit-motive, we recruit top-name, ethical security experts and find like-minded
customers that want to use their IT security budget as a "vote" to support socially responsible entrepreneurship. The
rapid pace of our current growth reflects the positive response the market has to our idealistic philosophy and innovative
business model.

If you have any questions about the advice in this report, please contact us at info@radicallyopensecurity.com

For more information about Radically Open Security and its services please visit our website:
www.radicallyopensecurity.com.

Conclusion 23

Appendix 1 Testing team

Abhinav Mishra Abhinav is a Senior Security Consultant with 9+ years of experience in hacking Web,
Mobile apps and Infrastructure. He is an active speaker and trainer, at various security
conferences/events.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

24 Radically Open Security B.V.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

