
Name: In-depth assessment – Google Apple Exposure Notification (Apple)

Contract nr: LC-01499045

Date of signature: 30-04-2020

Name of the deliverable: Deliverable 3.11

Authors: Joost Agterhoek, Michiel Leenaars (NLnet)

Level of distribution: Confidential, only for members of the facility
(including the Commission Services)

Confidential: Yes

https://reviewfacility.eu/

Source Code and Binary Audit

European Commission

V 1.2
Amsterdam, January 24th, 2023
Confidential

Document Properties

Client European Commission

Title Source code and binary audit

Targets Source code - https://developer.apple.com/exposure-notification/
Binaries contained in iOS 15.4 firmware - https://
updates.cdn-apple.com/2022FCSWinter/
fullrestores/071-09661/51A3C446-9140-48F9-9190-3DFD963CA63D/
iPhone10,3,iPhone10,6_15.4_19E241_Restore.ipsw

Version 1.2

Pentesters Fabian Freyer, Daniel Attevelt

Authors Daniel Attevelt, Marcus Bointon

Reviewed by Sipke Mellema, Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

1.0 April 30th, 2022 Daniel Attevelt Initial draft

1.1 January 4th, 2023 Marcus Bointon Review

1.2 January 24th, 2023 Daniel Attevelt Final

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

2 Methodology 7
2.1 Planning 7

3 Reconnaissance and Fingerprinting 8

4 Security Architecture 9

5 Future Work 25

6 Conclusion 26

Appendix 1 Sample Configuration 27

Appendix 2 Data model 31

Appendix 3 Configuration server sslscan output 33

Appendix 4 Glossary 35

Appendix 5 Testing team 36

1 Executive Summary

1.1 Introduction

Between March 1, 2022 and April 30, 2022, Radically Open Security B.V. carried out a code audit and binary analysis for

the European Commission (the EC).

This report contains our findings as well as detailed explanations of exactly how ROS performed the audit.

1.2 Scope of work

The scope of the penetration test was limited to the following targets:

• Source code - https://developer.apple.com/exposure-notification/

• Binaries contained in iOS 15.4 firmware - https://updates.cdn-apple.com/2022FCSWinter/

fullrestores/071-09661/51A3C446-9140-48F9-9190-3DFD963CA63D/

iPhone10,3,iPhone10,6_15.4_19E241_Restore.ipsw

1.3 Project objectives

ROS will perform a code audit and binary analysis of the selected targets with the EC in order to assess the security of

the COVID-19 Exposure Notification framework, as well as the privacy claims made by Apple regarding said framework.

To do so ROS will analyze the source code and appropriate binaries to ascertain the security properties of the system as

well if sufficient safeguards regarding user privacy are in place.

1.4 Timeline

The security audit took place between March 1, 2022 and April 30, 2022.

1.5 Results In A Nutshell

As part of the EC Review Facility, we reviewed Apple’s implementation of the Google / Apple Exposure Notification

system. The Exposure Notification system is built into the iOS operating system. It serves as a framework which allows

for COVID-19 related contact tracing using the iPhone’s bluetooth technology.

We based our review on the source code Apple has Published (April 2022), alongside reverse engineering of the iOS

implementations in iOS 15.4, since earlier published versions did not match well with the code running on iPhones.

4 Radically Open Security B.V.

https://www.google.com/covid19/exposurenotifications/
https://developer.apple.com/exposure-notification/

Confidential

The iOS sandboxing model is focused on rogue apps, however, it is not sufficient to protect against vulnerabilities in

Apple’s own code. Large parts of the exposure notification framework’s supporting services are implemented within iOS

daemons which handle potential attacker-controlled input such as bluetoothd, pose large external attack surfaces,

and have had a number of vulnerabilities identified in them in the past.

In contrast to previously published source code, the source code published by Apple at the time of testing matches

very well with parts of the implementations in iOS 15. However, large parts of the implementation have been omitted,

including many APIs that are used between internal Apple services. The published source code suggests a much more

limited functionality compared to the actual implementation. This is especially true for the Exposure Notifications Express

mode.

It is clear that Apple has implemented more functionality related to Exposure Notification since the publication of the

source code.

Security Model
At the core of the security model lies a privilege separation between the Regional/National Exposure Notification app,

and the Exposure Notification implementation within the operating system:

The app acts only as a thin UI layer, setting configuration values used for calculating the risk score, and displaying the

risk score. The app can also retrieve the following information from the system:

• Exposure windows, which correspond to a potential exposure during a 30-minute period.

• Temporary Exposure Keys (TEK)s (also referred to as Diagnosis Keys in this context) used to derive the Rolling

Proximity Identifiers (RPI) which are part of the broadcast beacons submitted to a key server. This only includes

keys that are over 24 hours old, and requires user consent. Authorization can be requested up to five days prior to

it being used.

• Whether a user traveled to other regions within the last 14 days.

The app should not be able to receive other information from the operating system; especially not their (precise) location

or RPIs seen by the device.

Per country or region, only a single, official, app available from the Apple App Store is authorized to retrieve this

information. This is enforced through provision of an entitlement by Apple, which is tied to contractual obligations, to the

authorized apps. Unauthorized apps with this entitlement are not allowed in the App Store by Apple. The security model

of Exposure Notifications is therefore contingent on Apple’s “walled garden” App Store model.

The operating system provides a set of services to the app. It operates the Exposure Notification Bluetooth Protocol,

listening for and storing Bluetooth Low Energy (BLE) beacons as well as broadcasting beacons containing RPIs and the

Associated Encrypted Metadata (AEMK) when Exposure Logging is active. On behalf of the app, it downloads datasets

from key servers, matches them against the local database of received beacons, calculates a risk score and exposure

windows, and passes these to the app. It enforces authentication and authorization of the app to ensure that only a

single, official, national or regional app is allowed to access the exposure notification information.

Furthermore, exposure notification telemetry is collected and gathered online using Local Differential Privacy. This

approach aims to “provide statistical, aggregate, and differentially private metrics to [Public Health Authorities (PHAs)]

Executive Summary 5

https://developer.apple.com/documentation/exposurenotification/enexposurewindow?language=objc
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf?1
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf

while protecting the individual contributions, and therefore the privacy of each participant” (Exposure Notification Privacy-

preserving Analytics (ENPA) White Paper).

Two features
We have detected there are two NE systems present in the iOS operating system. The first, we will call the API, the

second ENX.

The API was released in iOS 13.5 and the source-code is largely published here.

Apple’s implementation also allows for an app-less approach (Exposure Notifications Express). This feature was

released in iOS 13.7. However, the source-code for this feature has not been published.

The main difference between the Exposure Notification API and ENX is that ENX implements support for a second

server, called the test verification server. Health practitioners report positive tests to this server, and the user then

receives a code which then needs to be verified. From here on the system appears to work the same way as the EN

API. Due to its closed-source nature, we have been unable to obtain a full picture of the security model of this feature,

however we have reported on the parts we were able to identify and analyze.

6 Radically Open Security B.V.

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://developer.apple.com/exposure-notification/

Confidential

2 Methodology

2.1 Planning

Our approach for this audit has been as follows:

1. Source code analysis

We have evaluated the published source code to gain an understanding of the the operation of the exposure

notification framework as well as its security model.

2. Cross reference source code against binary implementation

We have cross referenced the source code against the binary implementation. In this way we are able to find

differences and nuances in between the published source code and the actual implementation.

3. Deep dive into the binary

Since we discovered there is more functionality implemented than the published source code suggests, we took a

deep dive into the relevant binaries to gain an understanding how they work.

4. Dynamic analysis

We used several dynamic analysis techniques to confirm our hypotheses on how the implementations work, as

well how the exposure notification framework functions in the bigger picture. Ie, which servers is it connected to,

how are these connections secured?

Methodology 7

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• Binary ninja – https://binary.ninja

• Objective ninja – https://github.com/jonpalmisc/ObjectiveNinja

• sslscan – https://github.com/rbsec/sslscan

• FRIDA – https://frida.re/

• SandBlaster – https://github.com/malus-security/sandblaster

• jtool2 – http://www.newosxbook.com/tools/jtool.html

8 Radically Open Security B.V.

https://binary.ninja
https://github.com/jonpalmisc/ObjectiveNinja
https://github.com/rbsec/sslscan
https://frida.re/
https://github.com/malus-security/sandblaster
http://www.newosxbook.com/tools/jtool.html

Confidential

4 Security Architecture

The main service implementing exposure notifications runs as an XPC service with the endpoint

com.apple.ExposureNotificationService, launched on activation by the system init process, launchd, as

configured in the System/Library/xpc/launchd.plist:

"/System/Library/Frameworks/ExposureNotification.framework/ExposureNotification" => {
 "_serviceBundles" => [
 0 => {
 "_executablePath" => "/System/Library/Frameworks/ExposureNotification.framework/XPCServices/
ExposureNotificationService.xpc/ExposureNotificationService"
 "_infoPlist" => {
 "CFBundleExecutable" => "ExposureNotificationService"
 "CFBundleIdentifier" => "com.apple.ExposureNotificationService"
 "CFBundleName" => "ExposureNotificationService"
 "CFBundlePackageType" => "XPC!"
 "CFBundleVersion" => "1"
 "XPCService" => {
 "ServiceType" => "Application"
 }
 }
 }
]
}

The main code for it is implemented in ExposureNotificationDaemon.framework, which is part of the

dyld_shared_cache and is part of both bluetoothd and ExposureNotificationService.

Access to the XPC service provided by the ExposureNotificationService by an App happens through the public

ExposureNotification.framework, which, as part of the dyld_shared_cache, is loaded into the app. Apps

use its exposed interface through an ENManager ObjectiveC-Object. Its public interfaces are covered by Apple’s

Developer Documentation. It acts as an XPC client to the com.apple.ExposureNotification XPC service. As

part of the app itself, it bridges the undocumented XPC interface to a public API, but does not represent a security

boundary.

A second version of the exposure notification daemon runs as part of the system bluetooth daemon, bluetoothd. It is

configured to accept requests on the com.apple.ExposureNotification mach service:

"/System/Library/LaunchDaemons/com.apple.bluetoothd.plist" => {
 "EnableTransactions" => 1
 "KeepAlive" => {
 "SuccessfulExit" => 0
 }
 "Label" => "com.apple.bluetoothd"
 "LaunchEvents" => {
 "com.apple.notifyd.matching" => {
 "com.apple.mobile.lockdown.activation_state" => {
 "Notification" => "com.apple.mobile.lockdown.activation_state"
 }
 }
 }
 "MachServices" => {
 "com.apple.bluetooth.BTPacketLogger" => 1
 "com.apple.bluetooth.cloudkit.xpc" => 1

Security Architecture 9

https://iphonedev.wiki/index.php/Dyld_shared_cache
https://developer.apple.com/documentation/exposurenotification/enmanager?language=objc
https://developer.apple.com/documentation/exposurenotification/enmanager?language=objc

 "com.apple.bluetooth.xpc" => 1
 "com.apple.BTAudioHALPlugin.xpc" => 1
 "com.apple.ExposureNotification" => 1
 "com.apple.server.bluetooth" => 1
 "com.apple.server.bluetooth.bbprovider.xpc" => 1
 "com.apple.server.bluetooth.classic.xpc" => 1
 "com.apple.server.bluetooth.general.xpc" => 1
 "com.apple.server.bluetooth.le.att.xpc" => 1
 "com.apple.server.bluetooth.le.pipe.xpc" => 1
 "com.apple.usernotifications.delegate.com.apple.ExposureNotification.UserNotification" => 1
 "com.apple.wirelessproxd" => 1
 }
 "POSIXSpawnType" => "Interactive"
 "ProgramArguments" => [
 0 => "/usr/sbin/bluetoothd"
]
 "PublishesEvents" => "com.apple.bluetooth.discovery"
 "RunAtLoad" => 1
 "SuccessfulExit" => 0
 "UserName" => "mobile"
}

When started as part of ExposureNotificationService, the xpcMain function of the

ExposureNotificationDaemon.framework is invoked, providing an XPC service,

com.apple.ExposureNotificationService, which clients can connect to.

Access control
Access control to the NE feature is implemented in 3 separate mechanisms

1. Checking the client app’s entitlements.

2. A check to determine if the app sending the XPC message is the same as the one that activated the NE feature.

3. A check of the XPC token.

These checks are performed in the XPC message handlers, after the connection is made, and before any functional

work is done. All message handlers perform check 1, but not all handlers perform checks 2 and 3.

On a different organizational level (XPC), the connection between the client and the service is validated by using the

client’s audit token. This prevents other programs from hijacking the connection and masquerading as a legitimate app.

See the implementation of

- (void) _xpcConnectionAccept:(xpc_connection_t) inCnx

for more details.

Entitlements
Entitlements are Apple’s core instrument for process authorization and authentication. They are embedded in a process’

code signature, and can be queried by the kernel or other processes. On non-jailbroken iPhones, where the Apple App

Store is the only way to run third-party software, access to entitlements is controlled by Apple – Apps with entitlements

that they are not allowed to possess are not allowed in the App Store.

10 Radically Open Security B.V.

Confidential

Access to this XPC service provided by ExposureNotificationService is controlled on two levels: * The iOS

kernel sandbox, Sandbox.kext, contains a sandbox profile DataActivation.sb, which requires apps to have

the com.apple.developer.exposure-notification entitlement to look up the mach port associated with

the XPC service. It does this by leveraging kernel hooks and the TrustedBSD framework. The following excerpt from

DataActivation.sb, recovered from an iOS 15 kernelcache using a modified version of SandBlaster shows part

of the relevant rules: scheme (require-all (global-name "com.apple.ExposureNotification")

(require-entitlement "com.apple.developer.exposure-notification")) This coarse-grained

access control is limited to processes constrained by this sandbox profile. This seems to be the case for iOS apps, but

not for iOS system processes. * Fine-grained access control is performed by the ExposureNotificationDaemon

in its [ENXPCConnection _xpcConnectionRequest:] implementation. After retrieving the message type mTyp

from the message dictionary, the corresponding handler is invoked and is responsible for authorizing the client using its

entitlements.

The implementation defines four levels of access, in increasing order:

Access
Level

Name Entitlements Required

1 ENAccessLevelNone None

2 ENAccessLevelPublic com.apple.developer.exposure-notification

3 ENAccessLevelPublicTest com.apple.developer.exposure-notification-test

4 ENAccessLevelPrivate com.apple.private.exposure-notification

Higher access levels include the permissions of lower access levels, i.e. an XPC client that has the

ENAccessLevelPrivate access level may perform any actions that require ENAccessLevelPublicTest.

The official national/regional app holds the com.apple.exposure-notification entitlement. For testing purposes

during development, app developers are also provided with a profile for the com.apple.developer.exposure-

notification-test entitlement; however according to Apple, it is “not allowed in the App Store”.

A number of additional entitlements are used to secure special-purpose interfaces and permissions: *

com.apple.developer.exposure-notification-test-skip-file-verification In order to determine

exposure, the device will download diagnosis keys from the key server. These are then processed and used to

match against received RPI’s from other devices. These diagnosis keys are digitally signed on the key server. After

downloading, the ENDaemon verifies the signature. When a client app has this entitlement set, ENDaemon will skip

verification of the digital signature.

• com.apple.developer.exposure-notification-logging If this on the client app, the ENDaemon

logging system is notified that debug information may be logged. It depends on the settings of ENDaemon if this

information is actually logged.

Security Architecture 11

https://arxiv.org/abs/1608.04303
https://developer.apple.com/documentation/exposurenotification/enmanager/3586333-gettestdiagnosiskeyswithcompleti?language=objc

• com.apple.private.exposure-notification-bypass-key-release-prompt When a user tests

positive for COVID-19 the regional PHA can collect the key to share with a central server of positive keys. Under

normal operating conditions, the user is prompted with a request for approval of transmission of the key to the

server. When this entitlement is set on the client app, this request for approval is bypassed and the user is not

presented with a request for approval.

• com.apple.private.exposure-notification-test-verification This entitlement is not used in

the public part of the framework, but is used in undocumented parts of the framework. When this entitlement is set

on the client app, it will be allowed to call [ENXPCConnection _xpcStartTestVerificationSession:]

on ENDaemon. This appears be part of Exposure Notification Express.

• com.apple.private.exposure-notification-show-buddy This entitlement is not used in the public

part of the framework, but is used in undocumented parts of the framework. When this entitlement is set on the

client app, it will be allowed to call [ENXPCConnection _xpcShowBuddy:] This appears be part of Exposure

Notification Express.

• com.apple.private.security.storage.ExposureNotification

Enumerating binaries on iOS posessing the above entitlements paints a picture of the different components involved

in Exposure Notification. Jonathan Levin’s OS X / iOS Entitlement Database is helpful for this, however, at the time of

writing it only covered iOS up to 15.2.

The following Table contains a List of binaries containing the appropriate entitlements:

Name 1 2 3 4 5 6 7 8 9 10 11

ExposureNotificationService X X X X X X X X X

DPSubmissionService X X X X

HealthENLauncher X X X

ExposureNotificationRemoteViewService X X X

HealthENBuddy X X

powerlogHelperd X

PerfPowerServicesExtended X

dasd X

aggregated X

imagent X

indexSettingsManifest X

Preferences X

bluetoothd X

Legend
1. com.apple.developer.exposure-notification

2. com.apple.developer.exposure-notification-test

12 Radically Open Security B.V.

http://newosxbook.com/ent.jl

Confidential

3. com.apple.developer.exposure-notification-logging

4. com.apple.developer.exposure-notification-test-skip-file-verification

5. com.apple.private.exposure-notification

6. com.apple.private.exposure-notification-bypass-key-release-prompt

7. com.apple.private.exposure-notification-device-identity

8. com.apple.private.exposure-notification-differential-privacy

9. com.apple.private.exposure-notification-show-buddy

10. com.apple.private.exposure-notification-test-verification

11. com.apple.private.security.storage.ExposureNotification

Active app check
This check is implemented in

- (BOOL) _appActiveStatusWithError:(NSErrorOutType) outError

Its main purpose is to compare the signing identity of the connecting client app with the signing identity that is associated

with the daemon when it is first activated.

It’s purpose seems to be to prevent other apps from interacting with the daemon after it has been activated with a client

app.

XPC token check
This check is implemented in

- (BOOL) _authorizedAndReturnError:(NSErrorOutType) outError

However, this function is not implemented in the code.

Analysis of this function in the binary revealed that the system checks whether the XPC token of the client is authorized

to use the NE service.

Overview
The table below lists the messages that can be handled by the NE service. The client communicates with the service by

sending these messages and processing the result. Each message is received by the service and then is passed on to

the handler for processing. Each handler performs security checks before it continues to do its work.

To prevent any confusion, the public access level does not mean that any app can use the function; It means that an

app that has an entitlement that gives it public access can use the function.

Security Architecture 13

Message handling function access
level

active
app
check

XPC
token
check

ENXPCMessageTypeManagerActivate _xpcManagerActivate: inRequest public no no

ENXPCMessageTypeSetEnabled _xpcSetEnabled: inRequest public yes yes

ENXPCMessageTypeEntitlementCheck _xpcEntitlementCheck: inRequest public no no

ENXPCMessageTypeGetUserTraveled _xpcGetUserTraveled: inRequest public yes yes

ENXPCMessageTypePreAuthorizeDiagnosisKeys_xpcPreAuthorizeDiagnosisKeys:
inRequest

public no no

ENXPCMessageTypeRequestDiagnosisKeys _xpcRequestPreAuthorizedDiagnosisKeys:
inRequest

public yes no

ENXPCMessageTypeGetTravelStatusEnabled _xpcGetTravelStatusEnabled: inRequest private no yes

ENXPCMessageTypeSetTravelStatusEnabled _xpcSetTravelStatusEnabled: inRequest private no yes

ENXPCMessageTypeGetDiagnosisKeys _xpcGetDiagnosisKeys:inRequest
testMode:NO

public yes yes

ENXPCMessageTypeGetTestDiagnosisKeys _xpcGetDiagnosisKeys:inRequest
testMode:YES

public
test

yes yes

ENXPCMessageTypeResetData _xpcResetData:inRequest private no yes

ENXPCMessageTypeExposureDetection
FileActivate

_xpcExposureDetectionFileActivate:
inRequest

public yes yes

ENXPCMessageTypeExposureDetection
FileAdd

_xpcExposureDetectionFileAdd: inRequest public no no

ENXPCMessageTypeExposureDetection
FileFinish

_xpcExposureDetectionFileFinish:inRequest public no no

ENXPCMessageTypeExposureDetection
FileGetExposures

_xpcExposureDetectionFileGetExposures:
inRequest

public no no

ENXPCMessageTypeExposureDetectionFile
GetExposureWindows

_xpcExposureDetectionFileGetExposureWindows:
inRequest

public no no

ENXPCMessageTypeGetRemotePresentation
Request

_xpcGetRemotePresentation
RequestIfNeeded:inRequest

public no yes

ENXPCMessageTypeRemotePresentation
Decision

_xpcRemotePresentationReceived
Decision:inRequest

private yes no

Legend
Message: The message type sent to the EN XPC service

Handling function: The function within the service that handles the message

access level: The access level the handler requires for it to perform its function. The client app's access level is

determined by its entitlements.

active app check: If the handler performs the active app check

xpc token check: If the handler performs the xpc token check.

14 Radically Open Security B.V.

Confidential

Analysis
Of the three security controls, the access level control, determined by the app’s entitlements, is the basis of the

security architecture surrounding access to service endpoints. In order to get access to the handler’s functionality, an

adversary would need to have an app with the necessary entitlement, or to exploit a program that has the entitlement.

Since not all handlers perform the active app check, technically, an adversary having access to an app with

access level public, could gain access to the handler’s functionality.

The last access control layer is on the XPC level, and authorizes whether a connection is allowed to use the service.

It is unclear why these controls are not implemented for functionality where it would not hinder correct operation (for

instance initialization). Nonetheless, we believe these controls provide a sufficient degree of protection.

Extra endpoints
Apart from the in the source code documented endpoints to the NE service, we found a set of endpoints that are not

documented in code. We believe that these endpoints belong to the ENX addition that has been shipped with iOS since

version 13.7

handling function access level

xpcStartTestVerificationSession private

xpcFetchTestVerificationMetadata private

xpcFinishTestVerificationSession private

xpcStartSelfReportWebSession none

xpcGetStatusForBundleIdentifier private

xpcGetInfo private

xpcSetActiveApp private

xpcGetLastExposureNotification private

xpcDownload private

xpcSetActiveRegion private

xpcSetAutomaticRegionSwitch private

xpcOnboardingDidStart private

xpcGetPreAuthorizeDiagnosisKeysEnabled private

xpcSetPreAuthorizeDiagnosisKeysEnabled private

xpcGetRemotePresentationRequestIfNeeded public

xpcRemotePresentationReceivedDecision private

xpcGetDataVaultSize private

xpcSetAvailabilityAlertEnabled private

xpcSetMonthlySummaryAlertEnabled private

xpcShowBuddy none

xpcVerifyTextMessage private

Security Architecture 15

xpcLegalConsentPageCount none

Legend
handling function The function handling the XPC message

access level The access level required to use the function. This is determined by the app’s entitlement

Analysis
The functions have been analysed for their security properties. What stands out that unlike the API, which requires

mostly public access levels, is that the presumed ENX functions require predominantly private access levels. We believe

that since ENX is a feature that does not require a third party client app to function, the public access level is largely

unnecessary.

Another thing that stands out is that unlike the API function handlers, the extra security controls active app check

and xpc token check have been omitted. The ENX part of the EN service relies entirely on the private entitlement

instead. The omission of these controls indicates that apps with the private access level are inherently trusted,

underlining the notion that the security model is primarily geared towards protecting against rogue apps.

Lastly, there are three API calls that require no access level at all.

The xpcStartSelfReportWebSession allows for starting a self-report session, if the region the user is currently in

allows for this feature. It's not clear why there are no security controls in place. A possible reason is to remove a barrier

for other apps/browsers to initiate this process. Based on static analysis, there appear to be no security problems.

Attack surfaces
bluetoothd
The bluetooth daemon bluetoothd handles everything bluetooth-related on iOS. Apart from providing an XPC service

for apps using bluetooth connections, it provides a number of bluetooth protocol implementations, such as A2DP and

AACP for audio, Magic Pairing, support for AirPods, HID Gamepads, and other accessories. It therefore possesses a

significant external attack surface, both over-the-air and through malicious third-party apps.

In the context of ExposureNotification, bluetoothd handles a number of core tasks:

• It implements the cryptographic protocols defined in the Google/Apple Exposure Notification Specification, and

holds the sensitive key material needed to do so. This entails deriving the RPIs and AEMK from the TEKs, and

encrypts the AEM.

• It periodically broadcasts the Bluetooth Low-Energy beacons containing the RPI and the AEM, rotating the

bluetooth MAC address together with the RPIs.

• It scans for Exposure Notification Bluetooth Low-Energy beacons broadcast by other devices, and stores them in

an SQLite database.

imagent
The imagent daemon is responsible for handling instant messaging. Large parts of the functionality are implemented in

the IMDaemonCore framework (part of the dyld_shared_cache).

16 Radically Open Security B.V.

Confidential

IMagentCore contains functionality to scan SMS messages for URLs:

Within these, it scans for URLs specified by the ExposureNotificationDaemon, and passes them back to the

ExposureNotificationDaemon via XPC through the enManager.

The list of allowed URLs is retrieved from Apple’s servers at https://init.ess.apple.com/WebObjects/

VCInit.woa/wa/getBag?ix=3. This contains a base64-encoded and signed FaceTime configuration, which

includes the exposure notification configuration:

 (page 17) <key>en-push-allow-domains</key>
 (page 17) <array>
 (page 17) <string>en.express</string>
 (page 17) <string>enexpress.app</string>
 (page 17) </array>
 (page 17) <key>en-push-disabled</key><false/>

On the ExposureNotificationDaemon side, the corresponding text XPC handler requires the

ENAccessLevelPrivate access level, and hence the com.apple.private.exposure-notification

entitlement, granting the highest level of privileges to a number of unrelated XPC calls. This does not conform to the

principle of least privilege; imagent holds a number of privileges it does not need through this entitlement.

Security Architecture 17

Further parsing of the SMS message happens within the ExposureNotificationDaemon

framework – and hence within bluetoothd – in [ENTextMessageManager

verifyTextMessage:phoneNumber:verificationDate:publicKey:publicKeyVersion:userReport:outError:].

This opens up external attack surface to the ExposureNotificationDaemon via SMS.

Using SEEMOO-Lab’s ARIstoteles, we were able to inject messages containing URLs to allowed domains and observe

them arriving in bluetoothd in the -[ENXPCConnection _xpcVerifyTextMessage:] method.

These code paths are not part of Apple’s published Exposure Notification source code, and therefore are unlikely to

have faced much public scrutiny. Further security research could focus on the parsing logic of IMDaemonCore and the

parsing and verification logic in ExposureNotificationDaemon, e.g. by fuzzing these code paths.

Other components
Dasd
Dasd is the Duet Activity Scheduler Daemon. It will repeatedly launch the currently active Exposure Notification App to

allow it to perform background processing. Other apps are not allowed to do this.

This is only performed when exposure notifications are enabled. To determine whether exposure notifications

are enabled, and to query the currently active app, dasd connects to the XPC service offered by bluetoothd,

com.apple.ExposureNotification. It holds the com.apple.private.exposure-notification

entitlement, and therefore has a very high privilege level when connecting to the service.

HealthENBuddy and HealthENLauncher
These components seem to be related to ENX. Since this feature does not require an external app to function, it does

need to provide some means of interaction to the user. HealthENBuddy and launcher are presumed to be the means of

interaction. We have not been able to fully reverse engineer these components since they are written in swift and our

tooling was not suited to decompile swift binaries.

Differential Privacy (DP)
Apple uses differential privacy to collect telemetry from devices. The User must opt in to sharing analytics in the settings

menu for this to be active:

Google and Apple’s claims about their differential privacy construction can be found in their white paper at https://

covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf. The

cryptographic properties of the analytics collection were not the subject of this review. Previous reviews of Apple’s

differential privacy implementation have found shortcomings, however it is unclear whether these shortcomings are still

present and whether and how they affect data collected from Exposure Notifications.

18 Radically Open Security B.V.

https://github.com/seemoo-lab/aristoteles
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://arxiv.org/pdf/1709.02753.pdf

Confidential

It’s important to note that Google and Apple’s implementations of differential privacy rely on multiparty computation

where the parties may not collaborate to compromise privacy. In the US, Google and Apple provide anonymization of

data from each of their respective devices, ISRG and NIH aggregate the anonymized data, and MITRE reconstructs the

aggregate data and displays the statistics. Privacy of the collected data is to a large extent contingent on these parties

not collaborating to unmask individual users.

The differential privacy implementation and telemetry collection code paths are not part of Apple’s source code release

for Exposure Notifications. End users can therefore not – without significant reverse engineering effort – verify Apple’s

claims about the privacy properties of the system.

Analytics are aggregated in bluetoothd in an ENDifferentialPrivacyManager instance. For analytics to be

collected, the region’s server configuration needs to opt in to analytics, and the user needs to grant explicit consent.

Through static reverse engineering, we verified that analytics are not collected or submitted to Google and Apple’s

ingestion servers when either of these conditions is not met.

Within the [ENDaemon _update] function, there is a code path that starts or stops the differential privacy collection

when consent is not given (indicated by value 2).

When [ENDaemon differentialPrivacyEnsureStopped] is called, this sets the ENDaemon’s differential

privacy manager to 0, and decreases its reference count. This ensures that future attempts to store telemetry on this

ENDifferentialPrivacyManager will not succeed. We did not, however, find any indication that withdrawal of

consent deletes already collected, but not-yet uploaded data.

Metrics are stored on the ENDifferentialPrivacyManager object. For example, on finishing an exposure

detection session, the number of beacons, the user’s risk score, the parameters that make up that risk score, and the

number of beacons seen are reported to the ENDifferentialPrivacyManager object.

Security Architecture 19

In Objective-C, it is a no-op to send messages to the nil receiver when the differential privacy manager is nil,

meaning that the metrics are not collected.

The DifferentialPrivacyManager passes the metrics to the DPSubmissionService, which uploads them to

the analytics endpoints configured in the ExposureNotification configuration.

The following metrics are collected:

• User risk score and user risk parameters (com.apple.EN.UserRisk,

com.apple.EN.UserRiskParameters). The risk score contains the daily maximum score, sum over scores,

and a weighted sum over durations for multiple days. The user risk parameters are calculated from the attenuation

and duration map over exposure windows.

• User beacon count (com.apple.EN.BeaconCount) - the number of beacons collected.

• User exposure notification and user exposure notification v2 (com.apple.EN.UserNotification,

com.apple.EN.UserNotificationV2D14) The exposure classification is recorded when an exposure

notification is posted.

• User exposure notification interaction (com.apple.EN.UserNotificationInteraction): The exposure

classification is recorded when a user notification is tapped.

• Code verified and code verified v2 (com.apple.EN.CodeVerified,

com.apple.EN.CodeVerifiedWithReportTypeV2D14) The latest exposure information and report type is

recorded when a test is verified. This may be the case only when Exposure Notification Express is enabled.

• Secondary attack (com.apple.EN.SecondaryAttackV2D14) – The value of this metric is yet unclear.

Whether it is reported depends on data from the latest exposure.

• User diagnosed vaccine status and user diagnosed vaccine status v2

(com.apple.EN.DiagnosedVaccineStatus, com.apple.EN.DiagnosedVaccineStatusV2D14) is

collected when diagnosis keys are released. It encodes whether a user is vaccinated, and whether they have had

a non-expired exposure registered.

• Keys uploaded and keys uploaded v2 (com.apple.EN.KeysUploaded,

com.apple.EN.KeysUploadedWithReportTypeV2D14)

• Delay between exposure and notification (com.apple.EN.DateExposure,

com.apple.EN.DateExposureV2D14) This is recorded in bins of under 4 days, under 7 days, and under 11

days when a user notification is posted.

20 Radically Open Security B.V.

Confidential

The v2 versions of many metrics may be the same value, but encoded in a number type that can handle larger values,

or a value containing additional information such as the report type. It’s unclear how submitting the same value twice

affects the differential privacy properties. Depending on the implementation, this may need to be adjusted for in the

appropriate privacy budgets.

Configuration
Apart from the configuration of the app itself, EN uses a configuration per region. This configuration is fetched every

time the Daemon’s preferences change, and on a regular time interval, and is ultimately retrieved from Apple’s server at

https://gateway.icloud.com/enservice. The configuration items include, among other properties:

• healthAuthorityId

• region (country code / state code)

• tekLocalDownloadBaseURL (The URL diagnosis keys are downloaded from)

• tekUploadURL (the URL exposure keys should be uploaded to)

• If text message verification is enabled (default no). If this parameter is no, no text verification will take place. This

parameter is tied to the text message processing by imagent.

• If test verification is enabled (default no)

• Public key information

A sample configuration pulled from the mentioned URL is provided in the appendix.

Apart from the above items, there are a set of items that control the behaviour of the Exposure Notification Framework

when a user moves from one region to another, other parameters to fine-tune the behaviour of the ENF, and parameters

to control the Differential Privacy feature of the ENF.

These configurations are set per region, and regions may correspond to nations or states.

It is presumed these configuration parameters, in combination with the DP feature, are used as a control and feedback

loop that adjusts the operation of the system in real-time.

This places a great deal of control in the hands of whomever controls the configuration endpoint. A successful attack on

Apple’s DNS server together with a compromise of their certificate authority could place control of the ENF in the hands

of an adversary.

The configuration file is stored in /var/mobile/Library/ExposureNotification/Regions/

Configurations/Server/{regioncode}.json.

Security Architecture 21

Since configuration takes place in EnConfigurationStore, which is a part of ENDaemon, it runs in the system’s

sandbox. An adversary, having broken the sandbox, may have access to the file and the ability to change its contents,

causing the app to malfunction.

Updating of the configuration
Apple provides a service to update the EN configuration through a service this is documented

here: https://developer.apple.com/documentation/exposurenotification/

changing_configuration_values_using_the_server_to_server_api?language=objc.

This allows a PHA to update the configuration for the region it has authority over by issuing a POST request on the

documented endpoint. This request has to be signed with a private key of which its public counterpart is known to Apple.

This system allows for server-to-server communication to automate changes under certain conditions.

Assuming this security control works as intended, only the entity in possession of the private key is able to make

changes to region’s configuration.

Great care must be taken to protect this private key from breach of confidentiality. If an adversary obtains this private

key, and no other security controls are in place, they may be able to alter the configuration of the EN feature. The extent

to which configuration items may be changed is not clear, and is beyond the scope of this assignment. The point is that

if the private key falls into unauthorized hands, they may be able to control the behaviour of the EN-enabled devices

present in the region.

Transport security
The EN feature communicates with the configuration server using TLS. The server supports TLSv1.3 and TLSv1.2 which

are regarded as secure versions of TLS. Though the preferred cipher suites for TLSv1.2 and TLSv1.3 are regarded as

safe, TLSv1.2 offers support for weak CBC based cipher suites.

The security risk for EN regarding transport security is considered low. The region configuration could be considered

public as there is no authentication control in place. Regarding the updating of the information, this is protected by both

TLS and asymmetric cryptography, minimizing the risk of tampering by an adversary.

Furthermore, Apple’s certificates are pinned on the device. Attempts at intercepting network traffic by adding a trusted

wildcard certificate to the system trust store were not successful.

Databases
EN uses two databases to store exposure related information.:

1. An advertisements database (ENAdvertisementSQLiteStore), where information of other devices is stored. To

circumvent a technical issue, there is a central store, and temporary stores that are merged into the central store

periodically.

2. An exposure database (ENExposureDatabase). In this database matching advertisements, are copied into the

"advertisements" table. This database also holds Temporary Exposure Keys (TEKs) and other metadata.

22 Radically Open Security B.V.

Confidential

The technology used to store the databases holding above tables is SQLite. This is a database format that is stored in a

single file on the filesystem and has no authentication / authorization system. Instead, it relies on the permissions of the

filesystem for authorization and higher-level systems for authentication. The contents of these files are not encrypted.

The central advertisements store is in /var/mobile/Library/ExposureNotification/Advertisements/

en_advertisements.db

Temporary advertisements stores are stored using the following naming convention: /var/mobile/Library/

ExposureNotification/Advertisements/tmp_en_advertisements_{uuid}.db

The exposure advertisements database is in /var/mobile/Library/ExposureNotification/Exposure/

en_exposure.sqlite

The logic controlling the database runs as part of ENDaemon and as such runs in the system sandbox, protecting it from

unauthorized access.

Backup and Restore
Exposure notification data is included in standard iPhone backups. However, the cryptographic key material, i.e. the TEK

and the observed beacons, are not saved. Only previously downloaded diagnosis key caches are retained.

On an iPhone which had exposure notifications enabled in Germany, and the AL, CO and HI states in the US, the

following (abridged) list of files was found in the backup:

Library/ExposureNotification
Library/ExposureNotification/Downloads
Library/ExposureNotification/Downloads/B0566516-9BE0-4675-8BB9-D44D399DF278
Library/ExposureNotification/Downloads/B0566516-9BE0-4675-8BB9-D44D399DF278/Downloads
Library/ExposureNotification/Downloads/B0566516-9BE0-4675-8BB9-D44D399DF278/index.txt
Library/ExposureNotification/Downloads/DD076728-7F45-4DBA-9CAF-0DA004B0D881
Library/ExposureNotification/Downloads/DD076728-7F45-4DBA-9CAF-0DA004B0D881/Downloads
Library/ExposureNotification/Downloads/DD076728-7F45-4DBA-9CAF-0DA004B0D881/index.txt
Library/ExposureNotification/Downloads/state.dat
Library/ExposureNotification/Regions
Library/ExposureNotification/Regions/Configurations
Library/ExposureNotification/Regions/Configurations/Server
Library/ExposureNotification/Regions/Configurations/Server/de.json
Library/ExposureNotification/Regions/Configurations/Server/us-ak.json
...
Library/ExposureNotification/Regions/Configurations/Server/us-wy.json
Library/ExposureNotification/Regions/Configurations/System
Library/ExposureNotification/Regions/Configurations/System/de.data
Library/ExposureNotification/Regions/Configurations/System/us-al.data
Library/ExposureNotification/Regions/Configurations/System/us-co.data
Library/ExposureNotification/Regions/Configurations/System/us-hi.data
Library/ExposureNotification/Regions/Subdivisions
Library/ExposureNotification/Regions/Subdivisions/Server
Library/ExposureNotification/Regions/Subdivisions/Server/de.plist
Library/ExposureNotification/Regions/Subdivisions/Server/us.plist
Library/ExposureNotification/VerificationHash
Library/ExposureNotification/VerificationHash/verificationHashes.dat
Library/Preferences/com.apple.ExposureNotification.plist

These databases were not part of the backup.

Security Architecture 23

Manipulating this backup to change preferences or manipulate the server configurations is possible, but exposure

notifications are disabled on restore. The server configurations are re-downloaded when enabling Exposure

Notifications. We were therefore not able to abuse this to e.g. change telemetry or TEK upload URLs.

24 Radically Open Security B.V.

Confidential

5 Future Work

• Commission a further audit of the Exposure Notification Express feature

This feature is undocumented in the source code; we stumbled upon it by chance. Though we examined the parts

we were able to see, we recommend commissioning a full evaluation of this feature.

Future Work 25

6 Conclusion

The iOS sandboxing model is focused on rogue apps, however, it is not sufficient to protect against vulnerabilities in

Apple’s own code. Large parts of the exposure notification framework’s supporting services are implemented within iOS

daemons which handle potential attacker-controlled input, such as bluetoothd, present large external attack surfaces,

and have had a number of vulnerabilities identified in them in the past.

Compared with previously published source code, the source code published by Apple at the time of testing matches

very well with parts of the implementations in iOS 15. However, large parts of the implementation have been omitted

from the source code, including many APIs that are used internally between Apple services. The published source

code suggests a much more limited functionality compared to the actual implementation. This is especially true for the

Exposure Notifications Express mode.

Regarding user privacy, we have not found any clear issues where sensitive, personally identifying information could

be obtained by an unauthorized third party. Though exposure telemetry is collected, this uses differential privacy. Some

shortcomings of this system have been found by third parties. It is unclear whether these issues have been fixed for iOS,

or what their impact on the EN framework might be.

26 Radically Open Security B.V.

Confidential

Appendix 1 Sample Configuration

{
 "subdivisions": [],
 "appConfigs": [
 {
 "countryCode": "NL",
 "state": "",
 "appBundleId": "nl.rijksoverheid.en",
 "publicKey":
 "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAExqcE4vibzfNTYyLDaMK4JVYI4PFsrsMiowu8vQpC9eB7uClAU4nJVKNeJ1AB9+M5dFTZib3ARZ3ZrFnrFIfUpg
\u003d\u003d",
 "publicKeyVersion": "v15",
 "signAuthorityName": "signAuthorityName",
 "config": {
 "enVersion": 1,
 "agencyColor": [
 0.72,
 0.15,
 0.36
],
 "reportTypeConfirmedClinicalDiagnosisWeight": 100,
 "isMatchingRestrictedRegion": false,
 "exposureDetailsBodyText_1_EN_US": "",
 "notificationSubject_3_EN_US": "",
 "hasStateRegions": false,
 "tekUploadURL": "",
 "agencyRegionName_DE_DE": "Die Niederlande",
 "attenuationNearMedThreshold": 50,
 "tekLocalDownloadBasePath": "",
 "testVerificationURL": "",
 "agencyRegionName_FR_FR": "Pays-Bas",
 "reportTypeConfirmedTestWeight": 100,
 "reportTypeNoneMap": 3,
 "agencyRegionName_AR_AE": "######",
 "agencyRegionName_TR_TR": "Hollanda",
 "agencyDisplayName_NL_NL": "Ministerie van Volksgezondheid",
 "attenuationImmediateWeight": 150,
 "exposureDetailsBodyText_4_EN_US": "",
 "regionDisabledTransitionGracePeriodMinutes": 1440,
 "perDayMaxERVThreshold_2": 0,
 "perDayMaxERVThreshold_3": 0,
 "perDayMaxERVThreshold_1": 0,
 "partnerTelemetryAppleCertificateChain": "",
 "infectiousnessHighWeight": 100,
 "perDayMaxERVThreshold_4": 0,
 "isTestRegion": false,
 "resetAvailabilityAlertForDeclinedUsers": false,
 "agencyVerificationAPIKey": "",
 "weightedDurationAtAttenuationThreshold_4": 0,
 "agencyHeaderStyle": 0,
 "agencyMessage_PL_PL": "CoronaMelder to oficjalna, holenderska aplikacja wysyłająca
 powiadomienia na temat koronawirusa, opracowana pod nadzorem holenderskiego Ministerstwa
 Zdrowia, Opieki Społecznej i Sportu. Więcej informacji można znaleźć na stronie internetowej
 coronamelder.nl",
 "weightedDurationAtAttenuationThreshold_1": 0,
 "weightedDurationAtAttenuationThreshold_3": 0,
 "publicHealthAuthorityTelemetryAppleCertificateChain": "",
 "weightedDurationAtAttenuationThreshold_2": 0,
 "applicationBackgroundRuntimeIntervalinHours": 2,

Sample Configuration 27

 "attenuationImmediateNearThreshold": 30,
 "attenuationNearWeight": 100,
 "flags": 0,
 "serverConfigVersion": 1,
 "agencyVerificationHeaderTitle": "",
 "V1Enable": true,
 "agencyVerificationCertificateURL": "",
 "dynamicAlgorithmEnabled": true,
 "agencyVerificationURL": "",
 "enEnabled": true,
 "notificationSubject_2_EN_US": "",
 "agencyMessage_BG_BG": "CoronaMelder е официалното приложение на Нидерландия
 за известяване във връзка с коронавируса, разработено под надзора на Министерството на
 здравеопазването, благосъстоянието и спорта. Повече информация ще откриеш на coronamelder.nl.",
 "dynamicThrottleUpAdvDensity": 20,
 "enablePreArmVerification": false,
 "legalConsentVersion": "",
 "agencyHeaderSubtitle_EN_US": "",
 "agencyRegionName_RO_RO": "Țările de Jos",
 "reportTypeSelfReportWeight": 100,
 "agencyMessage_NL_NL": "CoronaMelder is de officiële corona notificatie-app van
 Nederland, ontwikkeld onder het toezicht van het Ministerie van Volksgezondheid, Welzijn en Sport.
 Meer informatie vind je op coronamelder.nl.",
 "chaffPercent": 0.006,
 "agencyRegionName_BG_BG": "Нидерландия",
 "privacyParameterInputCandence": 7,
 "appleTelemetryEndpoint": "https://exposure-notification.apple.com",
 "chaffTotal": 1,
 "verificationCodeLearnMoreURL": "",
 "agencyDisplayName_AR_AE": "##### #####",
 "agencyDisplayName_PL_PL": "Holenderskie Ministerstwo Zdrowia",
 "attenuationMedWeight": 50,
 "clinicalDiagnosisPerDaySumERVThreshold_1": 0,
 "clinicalDiagnosisPerDaySumERVThreshold_2": 0,
 "notificationSubject_1_EN_US": "",
 "agencyDisplayName_TR_TR": "Sağlık Bakanlığı",
 "agencyRegionName_NL_NL": "Nederland",
 "clinicalDiagnosisPerDaySumERVThreshold_3": 0,
 "rpiAdvertisementToleranceInMinutes": 120,
 "clinicalDiagnosisPerDaySumERVThreshold_4": 0,
 "reportTypeRecursiveWeight": 100,
 "forceAPWakeIntervalInMinutesThreshold": 5,
 "symptomOnsetToInfectiousnessMap": 288605699003383808,
 "daysSinceExposureThreshold": 14,
 "classificationName_3": "",
 "agencyRegionName_PL_PL": "Holandia",
 "classificationName_2": "",
 "classificationName_4": "",
 "classificationName_1": "",
 "enableRecursiveType": false,
 "detectExposureNKDLimit": 6,
 "regionIdentifier": "",
 "rpiDuplicateAdvertisementToleranceInMinutes": 20,
 "agencyDisplayName_DE_DE": "Gesundheitsministerium",
 "agencyVerificationMessage": "",
 "agencyDisplayName_ES_ES": "Ministerio de Salud",
 "recursivePerDaySumERVThreshold_4": 0,
 "recursivePerDaySumERVThreshold_3": 0,
 "recursivePerDaySumERVThreshold_2": 0,
 "exposureDetailsBodyText_3_EN_US": "",
 "recursivePerDaySumERVThreshold_1": 0,

28 Radically Open Security B.V.

Confidential

 "testVerificationAPIKey": "",
 "agencyMessage_FR_FR": "CoronaMelder est l\u0027application officielle de
 notification du coronavirus aux Pays-Bas développée sous la supervision du ministère de la Santé,
 du Bien-être et des Sports. Vous trouverez plus d\u0027informations sur coronamelder.nl.",
 "numberOfAdvSamplesForRPIThreshold": 1,
 "agencyMessage_AR_AE": "###### ## ####### ##### (CoronaMelder) ## ###### ####### ##
.######## ######### ##### ##### ##### ### ###### ## ##### ####### ###### ## ####### ######
coronamelder.nl.",
 "agencyMessage_TR_TR": "CoronaMelder, Sağlık, Refah ve Spor Bakanlığı gözetiminde
 geliştirilen, Hollanda\u0027daki resmi Korona bildirim uygulamasıdır. Daha fazla bilgiyi
 coronamelder.nl adresinde bulabilirsiniz.",
 "agencyDisplayName_EN_US": "Ministry of Health",
 "agencyHeaderTextColor": [
 1,
 1,
 1
],
 "agencyMessage_RO_RO": "CoronaMelder este aplicația oficială de notificare pentru
 coronavirus în Țările de Jos, dezvoltată sub supravegherea Ministerului Sănătății Publice,
 Bunăstării și Sportului. Mai multe informații găsiți pe coronamelder.nl",
 "agencyWebsiteURL": "",
 "infectiousnessStandardWeight": 100,
 "agencyFAQWebsiteURL": "",
 "confirmedTestPerDaySumERVThreshold_1": 0,
 "testVerificationCertificateURL": "",
 "confirmedTestPerDaySumERVThreshold_4": 0,
 "confirmedTestPerDaySumERVThreshold_2": 0,
 "confirmedTestPerDaySumERVThreshold_3": 0,
 "osTriggeredAppRunTimeInSeconds": 300,
 "dynamicThrottleDownAdvDensity": 6,
 "agencyDisplayName_BG_BG": "Министерство на здравеопазването",
 "enableChaff": true,
 "tekLocalDownloadIndexFile": "",
 "regionTransitionGracePeriodInMinutes": 180,
 "agencyRegionName_EN_US": "The Netherlands",
 "healthAuthorityID": "",
 "selfReportPerDaySumERVThreshold_3": 0,
 "agencyMessage_ES_ES": "CoronaMelder es la app de notificación de coronavirus
 oficial de los Países Bajos desarrollada bajo la supervisión del Ministerio de Salud, Bienestar y
 Deportes de los Países Bajos. Para más información, visita coronamelder.nl.",
 "selfReportPerDaySumERVThreshold_4": 0,
 "agencyImage": "https://coronamelder.nl/img/coronamelder-rijksoverheid-logo.png?v
\u003d2",
 "selfReportPerDaySumERVThreshold_1": 0,
 "selfReportPerDaySumERVThreshold_2": 0,
 "dynamicThrottleDownRSSI": -55,
 "enableAssociatedDomains": true,
 "tekPublishInterval": 24,
 "notificationSubject_4_EN_US": "",
 "perDaySumERVThreshold_2": 0,
 "callbackIntervalInMin": 1440,
 "exposureDetailsBodyText_2_EN_US": "",
 "perDaySumERVThreshold_1": 0,
 "perDaySumERVThreshold_4": 0,
 "phaPackageName": "",
 "perDaySumERVThreshold_3": 0,
 "dynamicThrottleUpDurationInMinutes": 900,
 "agencyMessage_DE_DE": "CoronaMelder ist die offizielle Corona-Benachrichtigungs-
App der Niederlande, die unter der Aufsicht des Ministeriums für Gesundheit, Gemeinwohl und Sport
 entwickelt wurde. Weitere Informationen finden Sie unter coronamelder.nl.",
 "classificationURL_2": "",

Sample Configuration 29

 "classificationURL_3": "",
 "classificationURL_4": "",
 "agencyMessage_EN_US": "CoronaMelder is the official Dutch coronavirus notification
 app, developed under supervision by the Ministry of Health, Welfare and Sport. Find more
 information on coronamelder.nl.",
 "dynamicThrottleDownDurationInSeconds": 216,
 "attenuationMedFarThreshold": 60,
 "exposureMatching": false,
 "stateRegionConfigs": {},
 "classificationURL_1": "",
 "agencyDisplayName_FR_FR": "Ministère de la Santé",
 "agencyRegionName_ES_ES": "Países Bajos",
 "attenuationOtherWeight": 0,
 "detectExposureDailyLimit": 20,
 "agencyDisplayName_RO_RO": "Ministerul Sănătății Publice",
 "chaffPercentAlt": 0.5
 }
 }
]
}

30 Radically Open Security B.V.

Confidential

Appendix 2 Data model

The datamodel used by EN is as follows:

ENAdvertisementSQLiteStore:

rpi BLOB,
encrypted_aem BLOB
timestamp INTEGER
scan_interval INTEGER
rssi INTEGER
max_rssi INTEGER
saturated BOOLEAN
counter INTEGER
PRIMARY KEY(rpi, timestamp)

ENExposureDatabase:

@"CREATE TABLE teks ("
 @"ROWID INTEGER PRIMARY KEY AUTOINCREMENT, "
 @"region_id TEXT, "
 @"app_bundle_id TEXT, "
 @"key BLOB NOT NULL UNIQUE, "
 @"start INTEGER NOT NULL, "
 @"period INTEGER NOT NULL, "
 @"end INTEGER NOT NULL, "
 @"onset_days INTEGER NOT NULL, "
 @"report_type INTEGER NOT NULL, "
 @"original_report_type INTEGER, "
 @"transmission_risk INTEGER NOT NULL)",
 @"CREATE TABLE advertisements ("
 @"rpi BLOB NOT NULL, "
 @"encrypted_aem BLOB NOT NULL, "
 @"timestamp INTEGER NOT NULL, "
 @"scan_interval INTEGER NOT NULL, "
 @"rssi INTEGER NOT NULL, "
 @"max_rssi INTEGER NOT NULL, "
 @"saturated INTEGER NOT NULL, "
 @"counter INTEGER NOT NULL, "
 @"tek_id INTEGER NOT NULL REFERENCES teks(ROWID) ON DELETE CASCADE, "
 @"PRIMARY KEY(rpi, timestamp)) WITHOUT ROWID",
 @"CREATE INDEX teks_end ON teks(end)",
 @"CREATE INDEX advertisement_tek_id ON advertisements(tek_id)",
 @"CREATE TABLE kvs ("
 @"ROWID INTEGER PRIMARY KEY AUTOINCREMENT, "
 @"key TEXT NOT NULL UNIQUE, "
 @"value, " // Note: intentionally not typed
 @"type INTEGER NOT NULL, "
 @"mod_date REAL NOT NULL, "
 @"expiration_date REAL)",
 @"CREATE TABLE session_history("
 @"ROWID INTEGER PRIMARY KEY AUTOINCREMENT, "
 @"uuid BLOB NOT NULL UNIQUE, "
 @"date REAL NOT NULL, "
 @"app_bundle_id TEXT, "
 @"region_cc TEXT, "
 @"region_sc TEXT, "
 @"file_count INTEGER NOT NULL, "
 @"match_count INTEGER NOT NULL, "

Data model 31

 @"build TEXT, "
 @"exp_class TEXT)",
 @"CREATE INDEX session_history_date ON session_history(date)",
 @"CREATE TABLE file_history("
 @"ROWID INTEGER PRIMARY KEY AUTOINCREMENT, "
 @"hash BLOB NOT NULL, "
 @"date REAL NOT NULL, "
 @"session_id INTEGER NOT NULL REFERENCES session_history(ROWID) ON DELETE CASCADE, "
 @"key_count INTEGER NOT NULL, "
 @"match_count INTEGER, "
 @"app_bundle_id TEXT, "
 @"region_cc TEXT, "
 @"region_sc TEXT, "
 @"metadata BLOB)",
 @"CREATE INDEX file_history_session_date ON file_history(session_id, date)",
 @"CREATE INDEX file_history_hash ON file_history(hash)",

32 Radically Open Security B.V.

Confidential

Appendix 3 Configuration server sslscan output

sslscan gateway.icloud.com
 Version: 2.0.11-static
 OpenSSL 1.1.1n-dev xx XXX xxxx

 Connected to 17.248.176.230

 Testing SSL server gateway.icloud.com on port 443 using SNI name gateway.icloud.com

 SSL/TLS Protocols:
 SSLv2 disabled
 SSLv3 disabled
 TLSv1.0 disabled
 TLSv1.1 disabled
 TLSv1.2 enabled
 TLSv1.3 enabled

 TLS Fallback SCSV:
 Server supports TLS Fallback SCSV

 TLS renegotiation:
 Session renegotiation not supported

 TLS Compression:
 Compression disabled

 Heartbleed:
 TLSv1.3 not vulnerable to heartbleed
 TLSv1.2 not vulnerable to heartbleed

 Supported Server Cipher(s):
 Preferred TLSv1.3 128 bits TLS_AES_128_GCM_SHA256 Curve 25519 DHE 253
 Accepted TLSv1.3 256 bits TLS_AES_256_GCM_SHA384 Curve 25519 DHE 253
 Accepted TLSv1.3 256 bits TLS_CHACHA20_POLY1305_SHA256 Curve 25519 DHE 253
 Preferred TLSv1.2 256 bits ECDHE-ECDSA-AES256-GCM-SHA384 Curve 25519 DHE 253
 Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-GCM-SHA384 Curve 25519 DHE 253
 Accepted TLSv1.2 256 bits ECDHE-ECDSA-CHACHA20-POLY1305 Curve 25519 DHE 253
 Accepted TLSv1.2 256 bits ECDHE-RSA-CHACHA20-POLY1305 Curve 25519 DHE 253
 Accepted TLSv1.2 128 bits ECDHE-ECDSA-AES128-GCM-SHA256 Curve 25519 DHE 253
 Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-GCM-SHA256 Curve 25519 DHE 253
 Accepted TLSv1.2 256 bits ECDHE-ECDSA-AES256-SHA384 Curve 25519 DHE 253
 Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-SHA384 Curve 25519 DHE 253
 Accepted TLSv1.2 256 bits ECDHE-ECDSA-CAMELLIA256-SHA384 Curve 25519 DHE 253
 Accepted TLSv1.2 256 bits ECDHE-RSA-CAMELLIA256-SHA384 Curve 25519 DHE 253
 Accepted TLSv1.2 128 bits ECDHE-ECDSA-AES128-SHA256 Curve 25519 DHE 253
 Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-SHA256 Curve 25519 DHE 253
 Accepted TLSv1.2 128 bits ECDHE-ECDSA-CAMELLIA128-SHA256 Curve 25519 DHE 253
 Accepted TLSv1.2 128 bits ECDHE-RSA-CAMELLIA128-SHA256 Curve 25519 DHE 253

 Server Key Exchange Group(s):
 TLSv1.3 128 bits secp256r1 (NIST P-256)
 TLSv1.3 192 bits secp384r1 (NIST P-384)
 TLSv1.3 260 bits secp521r1 (NIST P-521)
 TLSv1.3 128 bits x25519
 TLSv1.3 224 bits x448
 TLSv1.2 128 bits secp256r1 (NIST P-256)
 TLSv1.2 192 bits secp384r1 (NIST P-384)
 TLSv1.2 260 bits secp521r1 (NIST P-521)
 TLSv1.2 128 bits x25519

Configuration server sslscan output 33

 TLSv1.2 224 bits x448

 SSL Certificate:
 Signature Algorithm: sha256WithRSAEncryption
 ECC Curve Name: prime256v1
 ECC Key Strength: 128

 Subject: gateway.icloud.com
 Altnames: DNS:gateway-india.icloud.com, DNS:gateway-sandbox.icloud.com, DNS:gateway-sr-
china.icloud.com, DNS:gateway-australia.icloud.com, DNS:gateway.icloud.com
 Issuer: Apple IST CA 2 - G1

 Not valid before: Jun 22 11:54:06 2021 GMT
 Not valid after: Jul 22 11:54:05 2022 GMT

34 Radically Open Security B.V.

Confidential

Appendix 4 Glossary

Client app
The app usually built by national governments that interacts with the Exposure Notification framework

ENDaemon
Exposure Notification Daemon. The part of the exposure notification framework that runs as a daemon. This carries out

the bulk of the operations involved with exposure notification.

Exposure Notification API (EN API)
The Application Programming Interface (API) developed by Apple and Google that allows for building apps that use

Exposure Notification framework.

Exposure Notification Express (ENX)
The second evolution of the contact tracing technology developed by Google and Apple. ENX allows for contact tracing

without a client app.

Rolling Proximity Identifier(RPI)
The ID derived from temporary exposure keys. This ID is broadcast as part of a bluetooth advertisement. This ID is used

instead of the key itself for anonymity purposes.

Glossary 35

Appendix 5 Testing team

Fabian Freyer After winning multiple high-profile international CTF tournaments and qualifying for
events such as DEF CON CTF and 0CTF with his CTF team Tasteless, Fabian is now
focusing on code auditing and pentesting. Among his public work, he has identified
critical vulnerabilities in iTerm2 (e.g. CVE-2019-9535 together with Stefan Grönke),
Homebrew and RocketChat. While he prefers reviewing low-level and native code in
Rust, C and Assembly and currently focuses on Apple software ecosystems such as
iOS and macOS, Fabian has a well-founded understanding of the security pitfalls of
web-frontend desktop applications and has identified a number of security flaws in
Electron-based applications (e.g. https://hackerone.com/reports/899964). Recently,
Fabian has been part of a collaborative effort to investigate the security of the Apple
AirTags and has held a talk on this topic at a hardware security conference.

Daniel Attevelt Daniel started programming at a young age, writing demos and games in assembly.
He then began developing hardware interfaces and control software for home-brew
hardware in C++. Daniel studied Cognitive Neuroscience at Utrecht University but chose
to follow a more practical path into software development. After completing a career in
software development, he switched to the security field and is now using his skills to
help protect society's information systems.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

36 Radically Open Security B.V.

https://hardwear.io/netherlands-2021/speakers/jiska-and-fabian-and-stacksmashing.php

